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Letter from
the editors
Our driving ethos at The Transmitter  

is simple: to be useful to the neuro- 

science community. To that end,  

the voices of scientists have been  

central to our publication—as sources, 

contributors, columnists and  

writers—since its launch a little 

more than a year ago. 

For this, our first book, it seemed only appropriate, 
therefore, to amplify those voices further. In this collec-
tion, we feature some of our favorite scientist-written essays 
from the past year—pieces that together not only capture 
the breadth of the field and the opinions within it, but also 
demonstrate the range of essays we run each week.



These pieces offer members of the neurosci-
ence community a place to explore the culture 
and practice of their field; to debate major ques-
tions; to express novel ideas to advance their 
work; to examine the craft of neuroscience; and 
to trace its evolution over time. 

On page 16, for example, Jakob Voigts implores 
the field—known for its DIY tendencies—to 
increase its efficiency by embracing professional 
help. Megan Peters explains on page 114 how 
to properly credit long lists of contributors, an 
increasingly common problem as neuroscience 
collaborations grow. Anne Churchland and Felicia 
Davatolhagh outline steps on page 110 to address 
the continued gender bias in neuroscience cita-
tions. And on page 22, Anthony Zador chronicles 
his efforts to bring together two disparate groups 
in neuroscience—experimentalists and theo-
rists—at the annual COSYNE meeting. 

In this compendium, we also highlight some 
of the essay series we have developed around 
critical practical challenges in neuroscience. The 
Open neuroscience and data-sharing series, for 
example, delves deep into the hurdles and ben-
efits of adopting more open and standardized 
practices across a field as varied as neuroscience. 

Among our most popular essays are those that 
tackle big questions in neuroscience, and so we 
have included several of those as well. On page 
42, Nicole Rust analyzes the brain’s functional 
regime, asking whether it functions like a chaotic 
system. And she asks 14 colleagues—among them 
Eve Marder and Kanaka Rajan—to weigh in on 
the implications. On page 122, Francis T. Fallon, 
Tomás J. Ryan, John W. Krakauer and their collab-
orators within the Representation: Past, Present 

and Future group describe the many meanings 
neuroscientists ascribe to “representations,” and 
advocate for a taxonomy of the term. 

It’s a lot to take in, which is why we also asked 
several of our contributing editors to weigh in on 
where they think the field is headed in the next 10 
to 20 years. Flip to page 73, for instance, to learn 
why Russell Poldrack calls for a “shift from the 
current focus on data to a heavier focus on theory.”

We hope you enjoy this small sample of what 
neuroscientists have written for The Transmitter 
so far, and visit the site regularly to keep up to 
date with a view of the field from within. 

			   —The editors

thetransmitter.org/perspectives/

T O  R E A D  M O R E  E S S AY S  

F R O M  T H E  T R A N S M I T T E R :
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Our planet stands on the 
brink of irreversible change. 
Neuroscientists need to do 
something about it.

I L L U S T R AT I O N  B Y  I N A  J A N G
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A 
new professor has to learn many things when start-
ing the job: how to recruit and manage people in 
their lab, how to organize a curriculum and teach 

a class, how to navigate departmental bureaucracy and 
apply to grants. One thing usually not on that list: how to 
do research in an entirely new field. Yet that is the position 
I find myself in as a new assistant professor of psychology 
and data science at New York University.

Although my job application was evaluated mainly on the 
basis of my work as a computational neuroscientist, I, like an 
increasing number of neuroscientists I know, have decided 
to put part of my research efforts toward the dire problem of 
climate change. To do so is unorthodox in academia and his-
torically would not be well received. But tackling the climate 
crisis requires radical new approaches.

There is good reason to believe that an influx of new 
faces could speed progress on some old problems, including 
the thorny challenges of climate change. While researching 
for a book I wrote on how mathematics and physics have 
influenced neuroscience, I repeatedly saw how cross-dis-
ciplinary interaction can help expand the space of ideas 
within a field. In addition to bringing new tools and perspec-
tives, outsiders can also shake up entrenched habits that 

B Y  G R A C E  L I N D S AY,  

A S S I S TA N T  P R O F E S S O R  O F  

P S Y C H O L O G Y  A N D  D ATA  S C I E N C E ,  

N E W  Y O R K  U N I V E R S I T Y

When I launched my new lab  

at New York University in 2022,  

I decided to apply my expertise in 

computer vision to an urgent problem 

far outside the brain: climate change.
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“There is little  

incentive to study  

the brain in a world  

drowning and  

on fire.”

could be holding a field back. Through contact 
with physics and computer science, for example, 
biologists have come to embrace preprints and 
open peer-review practices.

The climate work I am interested in takes 
the form of machine-learning applications for 
the field of remote sensing, which involves 
the use of satellites and other devices to iden-
tify and study the electromagnetic signature of 
locations on Earth or other planets. My neurosci-
ence research centers on the visual system, and 
the models that I build to study it overlap with 
methods from machine learning and 
computer vision.

I have been able to 
use techniques I picked 
up while studying the 
brain to analyze satel-
lite imagery for a vari-
ety of climate-related 
purposes. For exam-
ple, my main project— 
done in collaboration with  
the nonprofit Collaborative 
Earth—focuses on identifying 
and studying the impact of beaver 
dams. These structures can play a positive 
role in adapting to climate change through their 
effects on floods, wildfire and soil.

I 
am not the only one to take this turn. Other 
neuroscientists have found their own cre-
ative paths into climate work. Cognitive 

neuroscientist Adam Aron turned away from his 
work on response control to focus on the psychol-

ogy of climate-change activism; he now runs the 
Climate Psychology and Action Lab at the Univer-
sity of California, San Diego, and has published 
a book on the climate crisis. Jeremy Freeman 
was a group leader at the Janelia Research Cam-
pus and director of computational biology at the 
Chan Zuckerberg Initiative before leaving to start 
CarbonPlan, a nonprofit organization that pro-
vides scientific analysis of climate policies and 
proposals. Anne Urai, assistant professor of neu-
roscience at Leiden University in the Netherlands, 
who studies sensory decision-making, is teaching 
neuroscientists what they can do in their labs and 

at their universities to tackle all aspects 
of the climate crisis; in addition to 

publishing on the topic, she 
has organized a Slack group 

for brain scientists inter-
ested in climate action.

Several neuroscien-
tists (myself included) 
who helped build the on- 

line computational neu-
roscience summer school 

Neuromatch Academy are 
now also helping to develop  

Climatematch Academy, a school 
that follows the same format as Neuro-

match but teaches concepts, coding and research 
topics related to computational climate science.

What has driven us, as scientists who have 
thus far dedicated our careers to the study of the 
brain, to pivot into climate work? For me, I can 
say that fear and anxiety were certainly motiva-
tors. The data are hard to ignore as a scientist, 
and the data on the climate crisis paint a grim but 
clear picture of our collective future, even with 
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efforts to curb the effects underway. The societal 
and material change still needed to counter cli-
mate change is enormous, and society changes 
only if the people in it do.

Academics, as people who can understand 
the science behind climate change and have the 
skills to act (and through teaching also galvanize 
others to act) reasonably feel a sense of duty. To 
continue on as though the climate crisis is not 
occurring would be, in a way, dishonest. It also 
doesn’t hurt that academics usually like to learn, 
and diving headfirst into an area as big and broad 
as climate change can be exciting, even if scary.

As I have found, integrating into a new 
research community presents obstacles: What 
are the standards and best practices here? Where 
are the most pressing research gaps? Will my 
work be taken seriously? Being a newcomer is 
not easy, but I have felt overwhelmingly wel-
comed by the community of people working on 
climate change. Everyone involved knows it is 
an all-hands-on-deck situation, and they are fre-
quently pleased—relieved, even—to see people 
from all walks of life take proper notice of the 
looming problem in front of them. Being upfront 
about my background and motivations for enter-
ing the field has also resulted in people guiding 
me toward the right resources and collaborators. 
There is no sense of imposter syndrome when 
you aren’t trying to be an expert but just trying 
to help.

Academia on the whole, however, is not 
known for dynamism and adaptability, certainly 
not on the time scale needed to tackle the climate 
crisis. Mid-career transitions, labs with two unre-
lated lines of research, a focus on incremental 

applied work—all of these possibilities are needed 
to enable more academics to help fight climate 
change, even though  none are advisable from a 
careerist perspective. How will I handle running a 
lab in which some students are studying attention 
in the visual system and others are studying aerial 
imagery? It is a problem with little precedent, and 
I will need to sort it out. How academia can make 
it easier for someone like me to try to tackle these 
problems is something we all collectively need to 
sort out.

I am optimistic that we as a community can 
make this work. Scientists are judged on all 
things—papers, grants, promotions—by other 
scientists; we therefore have the power to set 
our own priorities. Climate change is an urgent, 
global problem, and we need to normalize dis-
cussions and action around climate change in 
all areas of science and academia. There is little 
incentive to study the brain in a world drowning 
and on fire. I feel privileged to have had any role 
in helping carry the torch of scientific progress 
thus far. To keep it burning for centuries more, 
we—every single one of us—need to do more than 
just make progress in our field. We need to act 
to preserve a healthy and sustainable planet on 
which future scientists can thrive.
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Why (and how)  
we need to professionalize 
neuroscience

I L L U S T R AT I O N  B Y  K L A U S  K R E M M E R Z
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Moving away from the field’s  

do-it-yourself ethos and embracing 

professional technical expertise  

will make research more efficient.

B Y  J A K O B  V O I G T S ,  

G R O U P  L E A D E R ,  H O W A R D  

H U G H E S  M E D I C A L  I N S T I T U T E

I
n our daily lives, we are accustomed to paying experts for 
help. Most people recognize it’s much faster and safer to 
hire mechanics to repair our cars than to attempt to do it 

ourselves. But the same is not true for today’s neuroscience, 
in which a lot of technically demanding work is performed 
by non-experts.

The resulting inefficiencies are obvious to anyone who 
has spent time in a lab. Analysis pipelines are hastily writ-
ten for one paper and then abandoned and redeveloped 
from scratch by the next postdoctoral researcher.  Experi-
ments are performed by research associates after minimal 
training, with high failure rates seen as an unavoidable 
part of the process. Multi-lab data infrastructure is built by 
researchers with no formal IT training and with no plan for 
supporting it over the long term. This model enables small 
teams to carry out multidisciplinary projects. But it carries 
large—and often unseen—costs in funding, time and oppor-
tunity, and it ultimately leads to less robust scientific results.

To remedy these costs, we need to enable a culture of 
professional expertise—a means to hire experts to advise 
us on, or to carry out, some of the technical tasks that are 
needed in modern neuroscience. This will require a cultural 
shift in the field, including new types of grant support, new 
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career paths for technical expertise and changes 
in how publications assign credit.

Over the past few decades, neuroscience 
has become so broad and technically sophisti-
cated that individual researchers can no longer 
fully understand the technical foundations of 
their experiments. The average systems neuro-
science project, for example, requires in-depth 
knowledge of animal surgery; mechanical, opti-
cal and electrical engineering; statistics and 
computer science. Neuroscientists very rarely 
have deep proficiency in all of these domains. 
Research involving custom tools and procedures, 
such as surgeries and electrophysiology, as well 
as novel methods, including viruses, algorithms 
and custom-designed microscopes, can be espe-
cially challenging. Unlike with large commercial 
devices, such as MRI scanners, appropriate use of 
these tools requires in-depth knowledge of many 
technical details.

We underestimate the price of the subopti-
mal experiments that result from this lack of 
expertise. Small mistakes can have large con-
sequences: The wrong grounding scheme on 
an electrophysiology implant can mask reward 
responses. Improperly soldered connectors 
can lead to missing weeks of data. A math error 
in a laser controller can destroy months’ worth 
of samples. In addition, fear of such mistakes 
incentivizes researchers to stick to methods 
they know well, which slows innovation. Even 
more seriously, applying invalid statistical meth-
ods; forgetting to include key controls; or failing 
to correct systematic artifacts produced by the 
wrong virus serotype, buffer, microscope drift 
or inappropriate data pre-processing can lead to 
incorrect results and wrong scientific inferences.

For all these examples, there are experts who 
would be able to spot and to fix the problems if 
only they were involved in the projects, be it at 
the start of a project to help plan, when encoun-
tering an issue, or to outsource specific tasks.

N
euroscientists have been reluctant to 
relinquish their DIY ethos for a variety 
of reasons. One is the belief that tin-

kering with methods and pushing techniques 
beyond known limits or intended purposes is 
an important method of discovery. Learning 
about the technical details of our work, and even 
learning from mistakes, can make us better sci-
entists, particularly for students and postdocs 
who are explicitly expected to pick up new skills. 
But not all technical training makes one a bet-
ter scientist. The most useful types of in-depth 
technical training are different for everyone. 
Training electrophysiologists to understand elec-
trical engineering concepts is useful. Expecting 
them to also become mechanical engineers will 
not add to their ability to reason about the input 
impedance of neurons but will instead lead to 
wasted months trying to fix an incorrectly home-
built recording rig.

Second, expert help can seem expensive. But 
it’s often cheaper in the long run than having a 
trainee spend months solving a simple problem, 
such as a faulty injector or the wrong glue. Beyond 
the wasted resources—salary, facility costs, sup-
plies—the opportunity cost, missed deadlines and 
compounded career implications of such delays 
are bigger still. Economically speaking, avoiding 
such delays should then be worth a lot of money.

18 • The Transmitter



Scientists also often overestimate their ability 
to become and remain experts across too many 
domains, and underestimate the amount of time 
required to solve technical problems. This results 
in a belief that asking a colleague with relevant 
expertise for help is enough, when in fact many 
problems require multi-day visits to diagnose 
issues, write software or train lab staff.

Putting the reluctance of individual scien-
tists aside, adopting a culture of expertise will 
also require some shifts in the field. The cur-
rent funding and publishing system punishes 
specialization and undervalues technical exper-
tise. For example, most published papers have 
one (or at best a few) first and last authors. As 
long as we hang on to the idea of singular intel-
lectual ownership as the main currency in 
neuroscience, people are incentivized to shoul-
der as much of their own project as they can 
rather than spending significant time helping 
someone else’s. A more granular means for 
giving credit and attribution—one that acknowl-
edges that neuroscience is a team sport—would 
improve scientific progress.

The field also needs to expand access to 

expert help. In some domains, institutes such as 
the Howard Hughes Medical Institute’s Janelia 
Research Campus in Ashburn, Virginia, where I 
work; the Allen Institute in Seattle, Washington; 
and the Sainsbury Wellcome Centre in London, 
England, demonstrate the power of in-house 
technical expertise. But at most universities, core 
facilities serve far too few labs to specialize in 
narrow areas and are permanently either over- 
or undersubscribed, which often leads to them 
getting shut down as too costly for the work they 
provide. This problem would be solved by open-
ing them up to external work, allowing more 
specialization and evening out the workload, as 
well as charging sustainable rates for their work, 
effectively turning them into companies.

C
urrently, the main source of outsourced 
technical expertise in neuroscience is tool 
manufacturers—they provide support and, 

in some cases, training to scientists. But this is 
usually tied to purchases, and such companies 
are often unclear on how to engage with techni-
cal work beyond their own tools. To remedy this, 
we need more flexibility, by making consulting 

“Expert help can seem expensive.  

But it’s often cheaper in the long run  

than having a trainee spend months  

solving a simple problem . . .”
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contracts for bespoke, project-specific services 
more common. Technical consulting is already 
commonplace in some areas, such as for server 
administration, vector cloning, mouse transgenics 
or air table installation. In systems neuroscience, 
some small, domain-specific consulting compa-
nies already offer such services, including Open 
Ephys and Aquineuro for freely moving imaging 
and electrophysiology, and Independent Neuro-
Science Services for microscope design.

The evolution of Open Ephys, of which I am 
co-founder, reflects the need for these kinds of 
services. The organization launched in 2010 as 
a nonprofit that disseminated scientist-built, 
open-source devices and software for systems 
neuroscience, with the aim of reducing the 
amount of time trainees had to spend getting 
their experimental rigs up and running. It has 
recently expanded its offerings, beginning to pro-
vide consulting services ranging from custom 
design work to lab-specific training modules. (I 
receive no financial compensation for my role at 
Open Ephys.)

These companies show that this general 
approach is viable, but we need many more. For 
the majority of technical issues, paying for exper-
tise is not yet an option.

To expand the market, funding agencies will 
need to include a means of paying for expertise. 
Currently, grants typically include funds only for 
equipment and scientist salaries. If they allow 
consulting fees, budgets are often tailored to 
student and postdoc salary levels. Professional 
technical consulting will be more costly—people 
with the relevant expertise need career paths that 
offer stability, salaries and work environments 

that are competitive with industry. However, 
these costs would be offset by removing needless 
delays, reducing the cost of the project overall 
and increasing the quality and robustness of sci-
entific results.

In sum, a cultural shift that increases the 
role of technically demanding scientific work as 
a career path—in academic labs, companies or 
publicly funded organizations, or as consultants—
would be good for science, good for trainees and 
good for funding agencies seeking to increase the 
impact of each dollar they grant.
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How to explore 
your scientific 
values and 
develop a vision 
for your field

As a new professor, I was caught 
off guard by one part of the job: 
my role as an evaluator.

B Y  G R A C E  L I N D S AY,   A S S I S TA N T  P R O F E S S O R  

O F  P S Y C H O L O G Y  A N D  D ATA  S C I E N C E ,  

N E W  Y O R K  U N I V E R S I T Y

thetransmitter.org/craft-and-
careers/how-to-explore-your-
scientific-values-and-develop- 
a-vision-for-your-field/
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The origins  
of COSYNE:  
Building a community

I L L U S T R AT I O N  B Y  M I C H E L A  B U T T I G N O L
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Thirty years ago, theoretical  

and experimental neuroscientists  

rarely went to the same conferences.  

So I helped launch a meeting  

to get them talking.

J
ust like you never forget your first love, you never 
forget your first conference. For me, it was the invi-
tation-only Snowbird Meeting on Neural Networks 

in 1988, held at the premier ski resort of the same name. 
Snowbird was scientifically intense, with many of the most 
engaging discussions continuing on the chair lifts. It brought 
together a core group of researchers—mostly trained in 
physics, computer science and engineering, including Yann 
LeCun, Geoffrey Hinton, Sara Solla, Terrence Sejnowski 
and John Hopfield—all thinking about how to compute with 
networks of simple processing elements (artificial neural 
networks). And it defined for me what a scientific meeting 
should be like.

Sixteen years later, that early experience inspired me to 
help found a new meeting, called Computational and Sys-
tems Neuroscience (COSYNE), which this week celebrates 
its 20th anniversary.

The story of COSYNE begins in the late 1980s. At the 
time, computational neuroscience was still coalescing as 
a community. Experimentalists were skeptical of theory, 
and computational neuroscientists often found themselves 
in a defensive position, repeatedly compelled to debate 
questions such as: “What good is theory in neuroscience 

B Y  A N T H O N Y  Z A D O R ,  

P R O F E S S O R  O F  B I O L O G Y,  C O L D 

S P R I N G  H A R B O R  L A B O R AT O R Y ; 

C O N T R I B U T I N G  E D I T O R ,  

T H E  T R A N S M I T T E R
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anyway?” One of the few meetings at which com-
putational neuroscientists felt welcome was the 
Conference and Workshop on Neural Informa-
tion Processing Systems (NIPS, later NeurIPS). 
That meeting evolved from Snowbird as an inter-
disciplinary gathering of researchers studying 
both biological and artificial neural networks, 
but, unlike Snowbird, it was open to all.

NeurIPS was my mainstay meeting during my 
graduate-school years. But by the mid-1990s, it 
had shifted its focus to pure machine learning, 
with neuroscience-related work increasingly 
treated as an afterthought. As a postdoctoral 
researcher in the theory-friendly experimental 
lab of Chuck Stevens, I missed the cross-fertiliza-
tion of ideas I had found at NeurIPS. So, without a 
conference to call home base, I started planning 
a new meeting—Neural Information and Coding 
(NIC)— to welcome researchers at the intersec-
tion of neural theory and experiment.

That was easier said than done. Beyond being 
simply a place to share information, conferences 
are essential for creating and nurturing commu-
nities. Most people grow up in a single scientific 
community and don’t understand, in practice, how 
individual communities differ—the structures that 
establish and reinforce them, the assumptions on 
which they are built. Language is often a major 
force in both shaping communities and erect-
ing their borders. A molecular biologist talking 
to peers, for example, can use the term “restric-
tion enzyme” (a protein that cuts DNA at a specific 
sequence) without needing to define it, just as 
a computer scientist can refer to an algorithm 
whose temporal scaling is “O(N2)” (indicating that 
the amount of time needed to run the algorithm 

increases as the square of the number of inputs); 
but each would likely need to explain those terms 
when trying to communicate with the other.

My goal in launching NIC was to bring together 
two communities: theorists and experimental-
ists. To do that effectively, I realized, they would 
need to begin to learn each other’s languages.

I 
modeled the first NIC, held in 1996 in Jack-
son Hole, Wyoming, after that memorable 
Snowbird meeting—small, invitation-only 

and with excellent skiing. I thought carefully 
about how to tackle the language issue and how 
to engage and excite both groups. Equations, in 
particular, can form an impenetrable communi-
cation barrier for people without the requisite 
mathematical background. As legend has it, Ste-
phen Hawking was famously advised that each 
equation he included in his bestseller “A Brief 
History of Time” would cut his sales in half.

Suspecting that theorists might be more toler-
ant of jargony talks than experimentalists would 
be, particularly because theoretical “jargon” often 
takes the form of equations, I skewed the oral 
program toward experimentalists. That bias—
and likely the location—helped make the meeting 
a success, and that success continued during 
subsequent meetings over the next few years in 
Big Sky (Montana), Snowbird (Utah), Grindel-
wald (Switzerland) and Les Houches (France). 
(Lift tickets were much more affordable in those 
days—less  than $20 per day in 2024 dollars—even 
for the struggling postdocs who organized and 
attended these meetings.)
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Several others joined in as organizers, includ-
ing, notably, Alexandre Pouget, who would also 
go on to play a central role in COSYNE. By the 
early 2000s, word of NIC had spread, and there 
was growing interest in founding an open, rather 
than invitation-only, version. In 2004, we held 
the first annual COSYNE meeting at Cold Spring 
Harbor Laboratory with 200 participants. Model-
ing ourselves after NeurIPS, in 2005 we adopted 
a two-part format: a single-track meeting in the 
city and parallel workshops at a ski resort.

In COSYNE’s early years, a small group of us 
handled all the responsibilities, some of which 
I hadn’t anticipated from my experience with 
smaller meetings—the Salt Lake City, Utah, hotel 
required me to “guarantee” the room block by 
signing a contract, for example, which I only 
later realized would have required me to pay 
up to $100,000 out of my personal funds if the 
promised number of participants failed to mate-
rialize. The weeks before each meeting were a 
chaotic series of crises. Over time, though, we 
set up structures—most notably, establishing 
program committees for the main meetings and 
workshops, and hiring a part-time conference 
coordinator.

T
oday, the conference runs with only min-
imal oversight from me and the others on 
the executive committee. And with input 

from the program committees and the broader 
community, we have increasingly had the oppor-
tunity to spend more time on self-reflection, 
considering important issues such as representa-
tion and accessibility.

Like many conferences in the early 2000s, 
COSYNE was exclusively chaired by men for its first 
five years. In 2008, we shifted to a system in which 
a man and a woman (one a theorist and the other 
an experimentalist) would co-chair each year, a 
first step in our ongoing commitment to diversity 
and inclusion. COSYNE has also been fortunate to 
attract sponsorship from a number of nonprofit 
organizations and corporations, with that funding 
used primarily for student travel grants.

As COSYNE meets again for the 20th time 
this week, it continues to evolve. It has swelled 
to more than 1,000 attendees and outgrown 
(and been priced out of) ski resorts; The final 
ski-centric workshop took place in 2023 at Mont 
Tremblant in Canada. Despite growing interest, 
we’ve chosen to limit the meeting’s size so that we 
can continue to foster a single community; the 
main COSYNE meeting remains a single-track 
conference that can be housed at one hotel or 
small conference center.

On the subject-matter side, artificial neural 
networks, which played a major role in the early 
history of computational neuroscience but then 
receded, have returned as a major influence. The 
chasm between experimentalists and theorists 
has narrowed considerably, perhaps due in some 
small part to COSYNE itself. The two groups are, if 
not exactly bilingual with each other’s jargon, far 
more adept at translation: If you walk into a ran-
dom talk at COSYNE today, chances are pretty high 
that some of the slides will be full of equations. But 
the experimentalists aren’t fleeing—indeed, it’s 
quite possible that the speaker showing the equa-
tions is an experimentalist.
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Learning or performance?  
Why the distinction matters  
for memory science
Twisties test: Simone Biles struggled to vault at the Summer 2020 Olympics because she felt unsure of 
her ability to translate her memory of action into behavior.

P H O T O  B Y  T I M  C L AY T O N  -  C O R B I S  /  G E T T Y  I M A G E S
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New methods make it possible  

to probe the neural substrates of 

memory with unprecedented precision. 

Making the most of them demands 

careful experimental design.

B Y  S T E P H E N  M A R E N ,  D I R E C T O R 

O F  T H E  B E C K M A N  I N S T I T U T E  

F O R  A D VA N C E D  S C I E N C E  

A N D  T E C H N O L O G Y  A N D  

P R O F E S S O R  O F  P S Y C H O L O G Y, 

U N I V E R S I T Y  O F  I L L I N O I S 

U R B A N A - C H A M PA I G N

O
ne of the grand challenges in neuroscience is to 
understand the nature and mechanisms of memory. 
But memory is elusive. From an experimenter’s per-

spective, memory manifests only in behavior—how we do 
on a test, for example. But as I write this article, I can recall 
many memories without any observable change in behavior: 
My recollection of the amazing sushi dinner I ate last night, 
for example, exists whether or not I tell anyone about it.

Likewise, losing the ability to do something does not 
imply that memory is lost. Simone Biles, widely considered 
one of the greatest gymnasts of all time, did not experience 
memory loss when she famously got the “twisties” while 
vaulting at the 2020 Summer Olympics. Her problem was 
with performance, not memory; she failed to complete the 
vault because she felt unsure of her ability to translate her 
memory of action into behavior.

Memory can exist without a behavioral signature. And this 
concept, known as the learning-performance distinction, has 
profound implications for how we study the neuroscience 
of memory. Fundamentally, the learning-performance dis-
tinction means that neural manipulations that undermine 
learned behavior do not necessarily do so by impairing mem-
ory. In fact, the behavioral expression of memory can be 
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influenced by many things, including motivation, 
fatigue or sensorimotor impairment.

With technological advances that enable sci-
entists to probe the neural substrates of memory 
with unprecedented precision, this distinction 
becomes especially important. Yet neuroscien-
tists new to the field are often unaware of the 
fundamental difference between learning and 
performance. Failing to appreciate this distinc-
tion once central to the neurobiological study of 
memory has led to work that obfuscates the liter-
ature and slows progress.

To advance the science of mem-
ory, researchers must design 
experiments with this distinc-
tion in mind. Fortunately, 
several strategies exist to 
help researchers tackle 
the issue.

T
hirty years ago, 
Richard F. Thomp-
son and his col-

leagues beautifully dissociated 
learning and performance using 
an eyeblink-conditioning procedure in 
rabbits. In this task, rabbits learn to close their 
eye when they hear a tone that signals an impend-
ing irritating air puff to the cornea. This form of 
classical (Pavlovian) conditioning is highly adaptive 
and allows organisms to organize behavior proac-
tively to anticipate future events.

Thompson used an array of tools, including 
anatomical tract tracing, selective brain lesions 
and electrophysiological recordings of neural 
activity, to try to pinpoint the physical substrate 

of the conditioned response—the memory trace, 
or engram—in the brainstem. He suspected 
either the interpositus nucleus (one of the cere-
bellum’s “deep nuclei”) or the red nucleus in the 
ventral midbrain. Lesioning or pharmacologi-
cally inactivating either brain region prevented 
the animals from developing a conditioned eye-
blink but did not affect their basic ability to blink 
(they still responded to the air puff).

The findings suggested either region could be 
the locus of the elusive engram. To distinguish the 
regions’ roles in learning versus performance, 

Thompson and his colleagues continued 
training the rabbits but stopped 

giving them the inactivating 
drug. When the interposi-

tus nucleus was awakened, 
rabbits acquired the task 
no differently from naive 
animals that had never 
received previous train-
ing—in other words, the 

interpositus-inactivated 
animals seemed not to have 

learned the task during their 
previous training.

By contrast, animals initially trained when 
the red nucleus was inactivated showed perfect 
retention. They blinked in response to the sound 
on the very first reconditioning trial, performing 
identically to animals trained without the drug. 
Red-nucleus-inactivated animals had acquired 
the task normally, despite a complete absence of 
learned behavior during training, showing that 
the red nucleus is important for performing the 
learned response but not for learning or remem-
bering it. The memory trace for this behavior, 

“The learning- 
performance distinction,  

has profound implications  
for how we study the 

neuroscience  of  
memory.”
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Thompson concluded, is localized in the cerebel-
lum, a monumental discovery for the field.

Thompson’s work highlights the importance of 
the learning-performance distinction when inter-
preting the effects of neural circuit manipulations. 
Had his team not carefully analyzed when mem-
ory was preserved in the rabbits, they might have 
falsely implicated the performance limb of the eye-
blink-conditioning circuit in memory processes.

I
n fact, performance deficits masquerade as 
memory impairments in many scenarios. For 
example, memories are best retrieved under 

the conditions or “context” in which they are ini-
tially encoded. Numerous studies in both humans 
and animals have demonstrated this phenomenon, 
known as context- or state-dependent memory.

In a textbook example from the 1970s, study 
participants memorized word lists either on 
land or underwater (equipped with scuba gear, 
of course). Minutes later, they tried to recall the 
lists either in the same context (dry-dry, wet-wet) 
in which they had learned them or in a different 
context (dry-wet, wet-dry). Recall was far superior 
when retrieval occurred in the same context as 
learning, showing that poor recall of “out-of-con-
text” information resulted from a performance 
deficit, not from a failure to learn the material.

These effects are not unique to environmental 
contexts: Drugs (e.g., alcohol or cannabis inebri-
ation), cognitive contexts (e.g., task instructions 
or strategies), hormones (e.g., gonadal steroid 
levels) and satiety states (e.g., hunger or thirst) 
can all yield state-dependent memory, highlight-
ing a confound for many neuroscientific studies 
of learning and memory—one that is becom-

ing more common as our ability to precisely 
target brain cells increases. Manipulating neu-
ral activity might change the internal context in 
which information is encoded during learning. 
When memory is tested later without the brain 
manipulation, the mismatch in internal context 
undermines the ability to retrieve the memory.

My laboratory demonstrated just this sort of 
mismatch. Rats trained to fear a sound when the 
thalamic nucleus reuniens, which connects the 
medial prefrontal cortex and hippocampus, was 
pharmacologically inactivated showed impaired 
retention the following day. However, we could 
fully reverse this impairment by inactivating the 
thalamus during the recall test. Put simply, rats 
trained and tested in the same brain state retained 
the learned response perfectly, whereas those 
trained and tested in different states did not.

Again, our results make it clear that poor per-
formance on a retention test does not imply poor 
learning or memory loss. The good news is that 
experimenters can detect performance deficits 
masquerading as memory loss using methods that 
reveal when memory is spared. They can iden-
tify generalization deficits caused by a mismatch 
in the learning and retrieval contexts (whether 
internal or external) by testing animals under 
common conditions. And learning curves provide 
important information about the acquisition rate 
and peak performance of learned responses.

Ultimately, behavioral designs that dissoci-
ate learning from performance will be essential 
to leveraging next-generation technology to 
advance the science of memory.
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On fashion in  
neuroscience: In defense  
of freezing behavior

I L L U S T R AT I O N  B Y  N ATA L I E  N E L S O N

32 • The Transmitter



Neuroscience experiments are moving 

toward the analysis of more complex 

behaviors, enabled by increasingly 

sophisticated tools. But we shouldn’t 

abandon simpler paradigms.

B Y  S H E E N A  J O S S E LY N ,  

S E N I O R  S C I E N T I S T,  H O S P I TA L  F O R 

S I C K  C H I L D R E N ;  C O N T R I B U T I N G 

E D I T O R ,  T H E  T R A N S M I T T E R

F
ashions come and go, even in science. What was once 
all the rage can be dismissed, viewed as passe over 
time. In neuroscience, there is a growing appreciation 

of the importance of studying behavior, enabled by a vast arse-
nal of tools to manipulate and observe brain function and to 
track increasingly complex types of behavior. The introduction 
of markerless pose estimators and machine-learning-based 
algorithms, for example, enables researchers to automatically 
quantify even the most complex behavior, from rodent facial 
expressions to unrestrained naturalistic behavior in the wild, 
with previously unimaginable resolution.

With this new capacity to study different types of 
complex behaviors, it may be tempting to view more-estab-
lished, simple-looking behaviors as archaic. But is it a good 
idea to blindly follow fashion and relegate such behaviors to 
the dustheap, akin to last year’s skinny jeans? I believe that 
the brain is best understood by embracing many different 
approaches, including studying many types of behavior—
that there is, and perhaps always will be, a critical place in 
neuroscience for the study of seemingly simple behavior.

As an example of simple-looking behavior, let’s con-
sider freezing, a defensive response to threatening stimuli. 
Defined as the absence of movement other than breath-
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ing, freezing is typically measured in Pavlovian 
threat experiments as a way to assess learning 
and memory in rodents. In these experiments, 
a neutral sensory cue, such as a light or tone, is 
paired with an aversive foot shock. After learning 
to associate the previously neutral cue with the 
shock, the cue alone triggers freezing, known as 
the conditioned response.

The study of freezing has a long history, dating 
back to the 1950s and ’60s, but came to the fore of 
neuroscience in the 1990s with brain circuit dissec-
tion techniques and the introduction of genetically 
modified mice.  Those experiments 
revealed, for example, a key brain 
region in threat conditioning: 
the lateral nucleus of the 
amygdala. Researchers 
mapped how sensory 
information travels to 
the lateral amygdala, 
identified many mol-
ecules important in 
memory formation, 
including CREB and aCa-
MKII, and even discovered a 
new memory phase.

Of late, however, freezing has dropped 
out of neuroscientific fashion, eclipsed by deci-
sion-making tasks and complex naturalistic 
behaviors. Several explanations may account for 
this. Freezing was deemed to be a simple, passive 
behavior that was not ethologically valid—that 
is, it didn’t reflect the animal’s natural behavior. 
Some researchers questioned whether freezing 
in rodents was a good index of the subjective 
emotion of fear in people and whether results 
from these rodent studies could be translated to 

treat human fear and anxiety disorders. I contend 
that it is now time that freezing becomes a new 
retro fashion trend in neuroscience. Here’s why:

C R I T I C I S M  1 :  F R E E Z I N G  I S  A  S I M P L E ,  

PA S S I V E  B E H AV I O R .

Despite appearances, freezing is far from a 
simple, passive response. A freezing rodent is not 
“lounging.” Instead, it shows high muscle tone, 
reflecting a state of attentive immobility, which 
may enhance perception and help the animal 
prepare for a quick escape. Freezing may also 

help conceal the animal’s next move 
from its predator. Whether or 

not a rodent freezes is influ-
enced by both internal and 

external factors, suggest-
ing that freezing reflects 
the outcome of an 
active decision-making 
process. Although not 
observable by behavior 

alone, there seems to be 
a lot going on “under the 

hood” of a freezing animal.

Assessing freezing behavior in 
the lab is relatively simple, which I view as 

a strength. Measuring freezing can be extremely 
low cost, making this type of experiment acces-
sible to many labs regardless of budget. In the 
omics era of big data, it might be beneficial to 
combine complex brain manipulations and 
observations with a relatively easily quantifiable 
behavior. Alternatively, researchers can use pose 
estimators to construct a microstructural time-
line of the precise behavioral action sequence 
of all defensive behaviors, including freezing. 

“Because freezing  
is a highly motivated  

behavior, findings gained  
from conditioned freezing 
studies have largely stood  
the test of time and have  

been reproduced by  
many labs.”
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This timeline could be probed by different brain- 
manipulation and observational techniques.

C R I T I C I S M  2 :  PAV L O V I A N  T H R E AT 

C O N D I T I O N I N G  A N D  T H E  A N A LY S I S  O F 

F R E E Z I N G  B E H AV I O R  A R E  A R T I F I C I A L  

“ L A B - B A S E D ”  P R O C E D U R E S  A N D  B E H AV I O R S 

T H AT  A R E  N O T  E T H O L O G I C A L LY  VA L I D .

Granted, rodents are highly unlikely to 
encounter electrical shocks in the wild. But 
rodents do freeze when confronted with threat-
ening stimuli such as a hawk or an owl, indicating 
that these threat experiments tap into a naturally 
occurring behavior. Indeed, freezing in response 
to threats is a natural behavior observed across 
many species, described in birds, monkeys and 
people. For instance, freezing behavior (defined 
as immobility, reduced heart rate and increased 
muscle tone) has been observed in people watch-
ing film clips of car accidents or depictions of 
social threats, such as angry faces.

Although there is an important place for study-
ing natural self-generated behavior with high 
ethological validity, examining a motivated behav-
ior such as conditioned freezing in the lab has 
several advantages. Pavlovian threat experiments 
afford enormous control, enabling experimenters 
to minimize the effects of variables that are not of 
interest and rule out alternative interpretations of 
their data. Because freezing is a highly motivated 
behavior, findings gained from conditioned freez-
ing studies have largely stood the test of time and 
have been reproduced by many labs. And a rich 
theoretical history supporting conditioned freez-
ing offers neuroscientists the ability to formulate 
and test hypotheses and constrain findings, thereby 
increasing the reproducibility of their work.

C R I T I C I S M  3 :  F R E E Z I N G  I N  R O D E N T S  I S  

N O T  E Q U I VA L E N T  T O  T H E  S U B J E C T I V E 

E M O T I O N  O F  F E A R  I N  P E O P L E .

Joseph LeDoux, a neuroscientist at New York 
University in New York City, has argued that fear is 
a subjective emotional state in people that cannot 
be directly measured in (and probably should not 
be inferred from) other animals, instead suggest-
ing we use terms such as “threat” and “defensive 
response” in rodent work. I agree. I also agree that, 
at present, there is a lack of direct translatabil-
ity of findings from conditioned freezing studies 
in rodents to human psychiatric conditions. But 
I argue that this situation is not unique to con-
ditioned threat studies measuring freezing. For 
instance, though people and rodents obtain food 
differently, studying foraging behavior in rodents 
is yielding important insights into brain function. 
Behaviors studied in rodents need not map 1-to-1 
with people to be useful. Our field will progress by 
gaining a fundamental understanding of how the 
brain works, and this foundational knowledge, I 
believe, will be key to more targeted and effective 
treatments of a myriad of human disorders.

As a now senior neuroscientist, I’ve witnessed 
the waxing and waning of fashions in neurosci-
ence. I continue to be excited when new and 
better methods replace older suboptimal ones. 
But I believe it is important to continually eval-
uate the utility of established methods, rather 
than quickly adopting the new simply because 
new things are fashionable. It’s in this spirit that 
I am defending freezing behavior; despite its rep-
utation as being unfashionable, it remains an 
important behavior to gain insights into brain 
function. To paraphrase Coco Chanel, fashion 
may change but style endures. Plus, I happen to 
still look good in last year’s skinny jeans.
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To make fMRI more  
clinically useful, we need  
to really get BOLD

I L L U S T R AT I O N  B Y  M A R I  F O U Z
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A better understanding of the blood 

oxygen level dependent, or BOLD,  

signal requires more support for 

multimodal imaging studies.

B Y  E V E LY N  L A K E ,  A S S I S TA N T 

P R O F E S S O R  O F  O F  R A D I O L O G Y 

A N D  B I O M E D I C A L  I M A G I N G ,  

YA L E  S C H O O L  O F  M E D I C I N E

F
unctional MRI (fMRI), though expensive, has many 
properties of an ideal clinical tool. It’s safe and non-
invasive. It is widely available in some countries, 

and increasingly so on a global scale. Its “blood oxygen level 
dependent,” or BOLD, signal is altered in people with almost 
any neurological condition and is rich enough to contain 
information specific to each person, offering the potential 
for a personalized approach to medical care across a wide 
spectrum of neurological conditions.

But despite enormous interest and investment in fMRI—
and its wide use in basic neuroscience research—it still 
lacks broad clinical utility; it is mainly employed for surgi-
cal planning. For fMRI to inform a wider range of clinical 
decision-making, we need better ways of deciphering what 
underlying changes in the brain drive changes to the BOLD 
signal.

If someone with Alzheimer’s disease has an increase in 
functional connectivity (a measure of synchrony between 
brain regions), for example, does this indicate that synapses 
are being lost? Or does it suggest that the brain is forming 
compensatory pathways to help the person avoid further 
cognitive decline? Or something else entirely? Depending 
on the answer, one can imagine different courses of treat-
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ment. Put simply, we cannot extract sufficient 
information from fMRI and patient outcomes 
alone to determine which scenarios are playing 
out and therefore what we should do when we 
observe changes in our fMRI readouts.

To better understand what fMRI actually 
shows, we need to use complementary methodol-
ogies, such as the emerging optical imaging tool 
of wide-field fluorescence calcium imaging. Com-
bining modalities presents significant technical 
challenges but offers the potential for deeper 
insights: observing the BOLD signal alongside 
other signals that report more directly on what is 
occurring in brain tissue. Using these more direct 
measurements instead of fMRI in clinical prac-
tice is not an option—they are unethical to use in 
people or invasive, requiring physical or optical 
access to the brain. But recent advances in rodent 
and non-human primate fMRI make it possible 
to use multiple complementary technologies 

simultaneously in animal models. Researchers 
can make tightly controlled observations across 
an animal’s lifespan and test novel intervention 
strategies, which will be especially important for 
fMRI to become an effective clinical tool.

W
ide-field fluorescence calcium imag-
ing is particularly promising as a 
complementary technology in that it 

encompasses a large field of view—in mice, the 
entire cortical mantle —enabling the researcher 
to monitor brain activity at the circuit or net-
work-level. It overlaps well with the whole-brain 
view afforded by fMRI and can be targeted 
to specific cell types. In combining these two 
modalities, we can simultaneously observe cell-
type-specific activity and the clinically accessible 
(but indiscriminate) BOLD fMRI signal.

“We cannot extract sufficient  

information from fMRI and patient  

outcomes alone to determine which  

scenarios are playing out and therefore  

what we should do when we observe  

changes in our fMRI readouts.”
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My group has built a device capable of simul-
taneous wide-field optical imaging and fMRI, 
which we are using to track the emergence and 
progression of dynamic changes in functional con-
nectivity in a mouse model of Alzheimer’s disease. 
In research published in Nature Communica-
tions in January, we showed that the two methods 
track well overall, with BOLD signals in line with 
excitatory neural activity. We also observed some 
intriguing instances where the two modali-
ties diverged, which may reflect an uncoupling 
between neural activity and vascular responses.

Our work and that of others hints at the 
promise of multimodal imaging. But to real-
ize that potential, the field needs to overcome 
a number of challenges. Obtaining high-qual-
ity fMRI data from animals requires an array 
of skills that go well beyond that required to 
collect human fMRI data—among them, basic-
to-complex animal care (including breeding and 
genotyping); surgical manipulations and post-op 
recovery; anesthesia; intubation/extubation and 
ventilation; animal training (for imaging awake 
subjects); maintaining animal physiology during 
imaging; data manipulation and curation; sta-
tistics; neurobiology; engineering; disease and 
injury modeling in animals; machine learn-
ing; study coordination; specialized software 
and hardware development; clinical medicine 
and inter-species translation; and more. Profi-
ciency in these skills requires years of training 
and practice, and the number of labs with exper-
tise to give this training is small compared with 
those doing more traditional human fMRI. For 
high-quality multimodal data, the demands are 
even greater, including expertise in both imaging 
modalities, engineering and their combination.

Adding to the technical challenges are cul-
tural practices that fail to adequately support 
and credit the people who are performing these 
difficult and time-consuming experiments, espe-
cially when it comes to multimodal animal data. 
The people doing the work are largely train-
ees, not technicians, at critical points in their 
academic careers. The current research environ-
ment discourages new trainees from acquiring 
the necessary skills to collect new data, espe-
cially complex data, because it can take years 
to pay off. Why not just download some that has 
already been acquired (and work from home)? 
As a mentor, it is becoming increasingly tough 
to advise trainees to devote substantial time and 
energy to data collection.

Sharing data from these types of exper-
iments is also particularly challenging. For 
fMRI research involving human participants, 
large, curated and openly shared data amassed 
from different institutes are an indispensable 
resource. The same type of dataset for uni-
modal, and even multimodal, animal imaging 
would be transformative for fMRI research and 
the clinical utility of fMRI. This goal requires 
standardized guidelines for data acquisition, 
curation and preprocessing, as well as organized 
and well-managed repositories for data and 
code. Researchers have begun important work 
toward establishing these resources for animal 
imaging data. But some aspects of this undertak-
ing, especially for multimodal animal data, are 
fundamentally different from the human data-
base counterpart.

Encouraging communication between those 
who collect data, who often have invaluable 
information, and the end users will be critical, 
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particularly at this early juncture. This prac-
tice will also help to foster relationships among 
scientists with common interests but diverse 
backgrounds, which can be a perfect recipe for 
transformative scientific progress.

To support these types of experiments, the 
field should invest in and credit the people who 
acquire these data, grow their ranks, and rec-
ognize that generating high-quality data takes 
skill and time. We also need to increase sup-
port for the development of software tools and 
repositories that enable the proper processing, 

manipulation, curation and sharing of these 
data. After all, we have a common goal—a better 
fundamental understanding of the fMRI signal 
and better methods for extracting information 
about the biological processes that underly our 
measurements. Achieving these ends will have 
far-reaching impacts on health care by elevating 
the clinical utility of fMRI.

“Encouraging communication  

between those who collect data,  

who often have invaluable  

information, and the end users will  

be critical, particularly at this  

early juncture.” 
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How can we fold 

cellular-level details 

into whole-brain 

neuroimaging 

networks?

thetransmitter.org/connector-
hub/how-can-we-fold-cellular-
level-details-into-whole-brain-
neuroimaging-networks/

I got answers from Bratislav 
Misic, who is inventing 
practical ways to connect the 
brain’s microscopic features with 
its macroscopic organization.

B Y  M A C  S H I N E ,  A S S O C I AT E  P R O F E S S O R  O F 

C O M P U TAT I O N A L  S Y S T E M S  N E U R O B I O L O G Y, 

U N I V E R S I T Y  O F  S Y D N E Y

Experimental approaches • 41



Is the brain  
uncontrollable,  
like the weather?

I L L U S T R AT I O N  B Y  K O U Z O U  S A K A I

B I G  P I C T U R E :

42 • The Transmitter



The brain may be chaotic.  

Does that mean our efforts  

to control it are doomed?

B Y  N I C O L E  R U S T,  

P R O F E S S O R  O F  P S Y C H O L O G Y, 

U N I V E R S I T Y  O F  P E N N S Y LVA N I A ; 

C O N T R I B U T I N G  E D I T O R ,  

T H E  T R A N S M I T T E R

C
omplex systems operate in ways that are hard to 
predict from their parts alone, because their behav-
ior is influenced by how their parts interact. As the 

famous saying goes, more is not just more; “more is differ-
ent.” Brain researchers are increasingly turning to the idea 
that complex systems support many of the brain’s functions, 
from spatial navigation to memory function. Likewise, they 
are beginning to realize that many types of brain dysfunc-
tion reflect a complex system gone awry, such as when the 
epileptic brain enters a seizure.

Creating a seizure in a computer simulation is trivial; it’s 
what generally happens when you incorporate excitatory 
feedback loops with no inhibitory force to counter them. 
It’s vastly more challenging, however, to create a model 
that approaches the complexity of the brain that isn’t seiz-
ing. Something akin to this delicate balance is thought to 
stabilize a number of brain systems, including those that 
maintain sanity (versus psychosis) and mood stability (ver-
sus mania or depression). Indeed, that the brain somehow 
exists in an exquisite equilibrium the vast majority of the 
time seems like nothing short of a miracle—given that it 
relies on numerous giant amplifying feedback loops, offer-
ing many avenues to disruption.
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Beyond the brain, many other complex 
systems live in a similarly delicate balance. Eco-
systems can break into toxic blooms. Snow packs 
can break into avalanches. Weather can break 
into hurricanes and tornadoes. These systems, 
however, are not just complex but chaotic, mean-
ing that they are subject to the butterfly effect, 
by which even tiny perturbations can sometimes 
push the system out of whack. (The phenomenon 
gets its name from the way that Edward Lorenz 
first described it: as if a butterfly flapping its 
wings over Brazil could cause a tornado in Texas.)

The butterfly effect explains why weather 
forecasts are much more accurate for the next 
few days than for the next few weeks. We can 
measure current conditions with only a certain 
degree of accuracy, and those small errors in our 
measurements of what’s happening now turn 
into big errors in our model predictions later.

For the same reason, chaotic systems are 
exceedingly hard to control, which naturally 
leads to a question: If the brain is chaotic like 
the weather—if seizures, depression and psycho-
sis are the analogs of hurricanes—is there any 
hope of bringing it back to a healthy state via a 
brain-based intervention, such as a drug or brain 
stimulation? Or are our efforts to control the 
brain’s complex systems doomed from the out-
set? In this essay, I contemplate that question. 
I also asked 14 experts in complex systems to 
chime in.

B
reakthroughs in weather research date 
back to the early 1900s, when researchers 
began to formulate the types of weather 

forecasting models that we use today. Often for-

gotten is that the explicit goal of early weather 
research was not just to predict the weather 
but also control it—both to head off disasters 
and to weaponize it. Indeed, weather control 
was the explicit goal behind “the Meteorology 
Project,” organized by Princeton University math-
ematician John von Neumann and industrial 
researcher Vladimir Zworykin, the latter of 
whom contributed to developing the television. 
As the Second World War began to ramp down in 
the mid-1940s, the pair approached government 
officials in Washington, D.C., to request funding 
for their two-step plan to create a new comput-
ing infrastructure to predict the weather (the 
outcome of which is reflected in today’s com-
puters as the von Neumann architecture) and to 
control the weather using those predictions. As 
described in their proposal, “Only with exact sci-
entific weather knowledge will effective weather 
control be possible.”

Over the next few decades, other researchers 
around the globe sought to control the weather. 
In the United States, a government effort called 
Project Cirrus, for example, focused on disabling 
hurricanes. In 1947, the team attempted to dissi-
pate a hurricane, conveniently forecast to remain 
at sea, by dropping 80 kilograms of dry ice on it 
from a B-17 bomber. The intent was to disrupt 
the hurricane’s internal structure, but instead the 
worst possible thing happened: The hurricane’s 
trajectory shifted 130 degrees, and it landed 
in Georgia. Project Stormfury resuscitated the 
idea in 1962 and lasted a few decades but never 
achieved any success. In short, 75 years after the 
Meteorology Project, we’ve achieved von Neu-
mann and Zworykin’s first goal, forecasting, but 
weather control hasn’t really panned out. Today, 
weather control happens in subtle ways, such 
as when China precipitated rain during the 2008 
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Olympics to ensure that it did not happen at an 
inopportune time. But because of chaos, we still 
cannot influence the paths of hurricanes in any 
predictable way.

For brain researchers, the history of weather 
control should give us pause. In our own attempts 
at controlling the brain, how likely is it that we’ll 
face the same difficulties that foiled weather 
researchers? The answer depends greatly on 
what type of thing the brain is, and that’s still a bit 
difficult to say. One theory suggests that the brain 
exists on the knife edge between order and disor-
der, in a state called “criticality.”

This critical brain hypothesis builds on work 
from physics focused on how phase transitions 
happen, such as when water changes to steam at 
a high temperature or carbon changes to diamond 
at high pressure. In these cases, the large-scale 
collective property of the system changes when a 
single parameter, such as temperature or pressure, 
crosses a critical point. But in other cases, this is 

not quite the right way to think about it—control 
derives not from an external parameter such as 
temperature, but rather from within the system 
itself. Grains of sand dropped onto a sandpile, 
for example, elicit avalanches that are just large 
enough to keep it at the boundary between piling 
and flattening. Birds in a flock move collectively, 
but individuals can affect the group’s behavior, 
which is crucial for responding to predators. The 
system organizes itself in a way that maintains it at 
that critical boundary of a phase transition.

The critical brain hypothesis accounts for a 
similar boundary. The gist is that if the brain is 
too disordered, it can’t do anything very useful, 
akin to being sedated. If it’s too ordered, it also 
can’t do anything, akin to being in a seizure. But 
at the edge of order and disorder, it’s optimally 
positioned to do all the many things it needs to 
do. The idea follows from studies of criticality 
in artificial recurrent neural networks, which 
perform optimally when positioned at the criti-
cal boundary. In such networks, the strength of 

“The brain’s complexity opens  

endless possibilities of creation and 

reconfiguration of patterns in space and 

time—and we have no way of predicting  

when and where they will occur.” 

—Olaf Sporns
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recurrent interactions between model neurons 
controls where on the spectrum the network sits. 
If neurons are too interconnected, a small input 
will trigger every neuron to fire; if neurons aren’t 
connected enough, even a giant input will peter 
out before it makes its way through the network. 
But if neurons are connected by just the right 
amount, an input can and will be processed in a 
sensible way by a subset of model neurons.

Maintaining the brain at the critical bound-
ary between order and disorder requires some 
type of exquisite regulation. In artificial neural 
networks, the balance of excitatory and inhibi-
tory connections maintains criticality—the same 
may be true in the brain. Along time scales of 
hours and days, plasticity and other forms of 
homeostatic regulation, which refers to neurons’ 
capacity to regulate their own excitability rela-
tive to total network activity, could help maintain 
this balance. Along time scales of seconds to min-
utes, firing-rate adaptation could play this role. 
Conversely, anything that upsets these mecha-
nisms, including mutated ion channels, broken 
plasticity mechanisms or aberrant neurotrans-
mission, could throw the brain into a perpetually 
or partially disordered state.

Although it is a compelling idea, it has been 
very difficult to test hypotheses of brain critical-
ity. Ideally, we would do things like study how the 
brain evolves after it is reset to similar initial con-
ditions, and that’s just not possible. Instead, most 
attempts seek to identify the types of signatures 
typical of systems in a critical state. Phenomena 
akin to avalanches have been observed in neu-
rons’ spiking patterns, for example: bursts of 
activity in cell cultures that occur with a power 
law distribution, where small bursts are much 
more likely than large ones. Another measure 
relies on the reverberation expected to be trig-
gered in a system, which creates long-range 
correlations across time. To date, the evidence 
supports the critical brain hypothesis, but it’s far 
from definitive. We just don’t yet know.

S
hould the brain prove to be chaotic—or 
close to the critical boundary—what are the 
implications? Does it mean all hope of con-

trol, and therefore treatment, is lost, as is the case 
for the weather? Or is that the wrong way to think 
about it? We might consider a few possibilities.

“The chaos in our brain  

is a feature we can control and not  

a maladaptive ‘bug’ we need to quell.”  

—Kanaka Rajan
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First, some haven’t given up on the idea that 
chaotic systems can in fact be controlled with tar-
geted perturbations. Researchers have figured 
out ways to control chaotic systems, in theory, 
via approaches such as the continuous injection 
of a signal, based on model predictions, as well 
as perturbations among attractor states. (Attrac-
tor states are patterns of activity that a network 
relaxes into, a bit like a ball rolling into a valley.) 
But for such an approach to be helpful, research-
ers would first have to create very extremely 
precise models of the brain. They would also 
have to develop ways to control the human 
brain with much more precision than is typi-
cally available today. Under the assumption that 
this approach would take the form of manipulat-
ing either genetic expression or brain activity, it 
would likely require the control of many genes or 
stimulation sites.

Second, insofar as disordered states such as 
seizures are signs of the brain entering subcrit-
ical or supercritical states, the brain appears to 
have internal mechanisms for restoring normal 
function. Under severe conditions, seizures can 
continue for hours—illustrating that the brain 
is physically capable of it—but typically last just 
minutes. Likewise, people often enter depres-
sive and psychotic episodes and then exit them 
days or weeks later. Unfortunately, we don’t 
really understand the mechanisms by which the 
brain self-organizes and renormalizes. A better 
understanding of those mechanisms could lead 
to better treatments or preventions, akin to the 
fences used to prevent avalanches.

Of course, the answer may be the one we wish 
were not true: It may be that in some cases, we 
simply cannot control the brain—at least not in 
the ways we would need to treat some types of 
dysfunction, such as epilepsy, psychosis and 
depression.

What do researchers predict?

To get a sense of how likely it is that the brain will 
turn out to be uncontrollable, like the weather, I 
asked some experts in complex systems to chime 
in. Read their responses beginning  on the follow-
ing page.
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What do  
researchers predict?

W I L L I A M  B I A L E K ,  P R I N C E T O N  U N I V E R S I T Y 

It seems plausible that important functions of the 
brain emerge from interactions among many neu-
rons. The “more is different” idea then leads to many 
ways in which neural activity could be unpredict-
able or uncontrollable. In an ordinary magnet, we 
can push on the important collective modes of the 

system just by applying a magnetic field. But even in older, relatively simple 
models of neural networks, the analog of a magnetic field would be a compli-
cated combination of inputs to each cell in the network, exciting some of the 
cells and inhibiting others. We don’t really have experimental tools that allow 
us to do this. So, even before we get to more controversial ideas such as criti-
cality or chaos, we have serious problems.

M A N L I O  D E  D O M E N I C O ,  U N I V E R S I T Y  O F  PA D U A 

Controlling a complex system such as the human 
brain is a formidable and challenging task. Evolu-
tionary forces have done an extraordinary job of 
shaping the structure and dynamics of the brain: It 
self-organizes in response to internal and external 
perturbations through mechanisms that are still not 

fully understood. From a statistical physics perspective, unraveling how the 
brain—as well as other biological systems—is able to self-regulate its behav-
ior while self-correcting for localized dysfunctions might open the door to a 
plethora of applications for systems biology and systems medicine in general, 
a perspective that makes the future rather exciting.
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S H A U L  D R U C K M A N N ,  S TA N F O R D  U N I V E R S I T Y

My intuition, and it is just an intuition, is that the 
brain will be controllable (by controllable I mean 
something like pushing the brain out of an epilep-
tic state). The main reason for that is that it needs 
to be internally controllable—information from one 
area needs to be transferred to another, which can 

be thought of as one brain area controlling the state of another. Such forms 
of internal control and modulation are a core part of how I imagine brains 
work. If we could tap into something similar to these internal dials, we have 
a chance at controlling the brain. Our modes of access will be quite different, 
however. How to use that access will require a sophisticated understanding of 
how to influence complex systems, which we currently just don’t have. More-
over, more subtle control, such as correcting just the parts of the dynamics that 
changed as the result of neurodegeneration, for instance, similar to diverting 
but not scattering a hurricane, would require a deeper understanding still. The 
problem itself is not foreign to science—controlling dynamical systems is a rich 
field of engineering—but it tends to focus on more straightforward engineered 
systems, not the complex web of interactions among heterogenous units that 
is something like a brain. This is exactly the kind of challenge that I and many 
others are going to devote a few decades of our lives to understanding.

TAT I A N A  E N G E L ,  P R I N C E T O N  U N I V E R S I T Y

The brain differs from the weather in a way that 
may make it more amenable to control. The brain 
contains endless self-organizing, self-regulating 
loops, acting ceaselessly to tune it to a well-function-
ing state. This self-tuning property is common to all 
complex biological systems. Think about how your 

body maintains a nearly constant temperature over a broad range of ambient 
conditions. Similarly, the brain has mechanisms across all scales—from mol-
ecules to large-scale networks—for sensing deviations from the normal and 
steering itself back to the functional state. Many disease states result from a 
malfunction in one of the self-tuning mechanisms. Thus, if we could fix the 
self-tuning mechanism, restoring the production of a missing molecule, for 
example, this repaired mechanism would almost miraculously do all the hard 
work of steering the brain toward the functional state. Although this general 
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idea sounds simple, it may be hard to realize in practice because the many 
self-tuning mechanisms are highly intertwined. The same molecule may be 
part of several self-tuning loops, and in trying to repair one, we could destroy 
another. In addition, the internal compensatory mechanisms may make a dis-
eased brain different from a healthy one. For example, when one brain area is 
lesioned, another area can take over its function. Or an area deprived of inputs 
necessary to perform its function can take on a new function, such as when 
a visual area in a blind person responds to sound or touch. Given these kinds 
of alterations, the same self-tuning loop may produce different outcomes in a 
healthy versus a diseased brain. Technological advances enable us to interface 
with the brain with increasing spatial and temporal precision, but the problem 
of controlling the brain remains far from being solved.

S T E P H A N I E  R .  J O N E S ,  B R O W N  U N I V E R S I T Y

I don’t think the brain is too complex to control 
to aid in the treatment of neuropathology. There are 
many examples showing that noninvasive electri-
cal and magnetic perturbations to the human brain 
can help restore normal function. One area in which 
there has been particular advance is in the treat-

ment of depression, where regular patterns of stimulation are improving 
symptoms by “renormalizing” circuit function. Single pulses of brain stimu-
lation combined with electrophysiological recording of the brain’s response 
are also used to measure the complexity of the response in people in a coma, 
as a means to predict recovery. But our understanding of how these pertur-
bations directly affect human brain circuits, and if and when they will have 
lasting effects, is limited. One approach to improving this understanding is by 
building detailed dynamical models of the biophysical elements that generate 
electromagnetic activity in cells and circuits, and simulating their response to 
various patterns of stimulation. With this approach, we can better understand 
the nature of the brain’s complexity and ultimately use it to our advantage to 
designe more efficacious stimulation paradigms.
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A N N  K E N N E D Y,  N O R T H W E S T E R N  U N I V E R S I T Y

I wouldn’t necessarily despair about unpredict-
ability. The Lorenz system is a famous example of 
a chaotic attractor, developed as a model for atmo-
spheric convection (to keep with your climate 
theme.) You can either change the 3D state (x, y, z) 
of the system or you can change the three quenched 

parameters (sigma, rho, beta) that govern how it evolves over time. The latter 
is indirect but much more powerful, even allowing you to eliminate chaos in 
the system entirely. Though I can’t tell you where the state of a Lorenz system 
will be far into the future, I can tell you that if you keep its quenched param-
eters fixed, its state will always lie within a tiny fraction of the total volume 
of 3D space. I believe this metaphor will hold for the brain: If we can cre-
ate targeted interventions that speed, slow, amplify or suppress the flow of 
neural activity through particular brain regions, we can restrict the space of 
trajectories activity will take through those regions even without controlling 
said activity directly. This is what I think a lot of neuromodulators and neu-
ropeptides are doing: reshaping the neural substrate to direct the flow of fast 
patterns of neural excitation and inhibition. Our challenge is that the brain 
has had millennia of evolution to make sure the right reshaping signals go to 
the right bits of substrate—we need to understand what it is they are doing 
there so we can hope to create interventions that mimic them with the same 
selectivity and specificity as the brain itself.

E V E  M A R D E R ,  B R A N D E I S  U N I V E R S I T Y

I think of these problems quite differently. Instead 
of focusing on the fact that diseased brains or nor-
mal brains that are faced with extreme perturbations 
“crash,” I would like to emphasize that the brain has 
many cellular and molecular mechanisms that pro-
mote stability. Just because it is possible to trigger 

brain dysfunction shouldn’t lead one to think that all brains are teetering on the 
edge of dysfunction. Rather, there are multiple sets of cell and circuit param-
eters that are consistent with “good enough” behavior, and this allows circuits 
to wander around in parameter space without losing function. And there are 
numerous and overlapping mechanisms that support cellular and neuronal sta-
bility. My lab studies the effects of temperature and other extreme perturbations 
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on the crustacean stomatogastric nervous system. Although all animals will 
“crash” if you raise the temperature enough, they are resilient to the more than 
20 degree Celsius temperature fluctuations that they usually experience. Many 
mechanisms play a role in this resilience, and likewise, many mechanisms also 
play roles in the resilience of healthy human brains.

M A R I N O  PA G A N ,  U N I V E R S I T Y  O F  E D I N B U R G H 

Unlike a hurricane’s dynamics, those of the 
brain are subject to powerful regulatory mecha-
nisms and are finely honed during development to 
perform specific functions. These compensatory 
forces ensure that most brains don’t erupt in sei-
zures, and that relatively normal function can be 

maintained even in the presence of lesions or genetic mutations. I believe 
that a deeper understanding of the brain’s intrinsic regulatory mechanisms 
will be crucial to learning how to provide corrections when neural dynam-
ics enter unhealthy states. Unfortunately, no two brains are alike, and I 
suspect that such an understanding will need to be tailored to individual 
brains, and that “precision medicine” approaches will be necessary to reca-
pitulate the large degree of individual variability that accompanies almost 
every type of brain dysfunction. One hope, however, is that some of the key 
mechanisms will be best described in a “latent space,” abstracted away from 
the extraordinary complexity of neural circuits, and that such high-level 
descriptions will be more amenable to scientific inquiry and to treatments. 

S T E P H A N I E  PA L M E R ,  U N I V E R S I T Y  O F  C H I C A G O 

The brain’s initial processing, the sensory “shell” 
that takes in and processes input, may have the most 
to gain from being poised near criticality. That gives 
the system exquisite responsiveness to changes in 
the external world. Whether that’s architected by the 
brain or a consequence of the structure of the driv-

ing input is up for debate, but the fact remains that signatures of criticality 
are observed in many sensing systems. Deeper in the brain, I’d expect neural 
populations to be, if anything, less critical—further from this kind of singular-
ity. (Though, of course, hippocampal regions are the cradle of epileptic foci 
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in humans.) What is clearly true is that the brain functions most of the time, 
in most organisms, in most individuals. This likely means that it’s not such a 
knife’s edge. As a theorist, I hope this feature of neural coding winds up being 
understandable and interpretable, not just a collection of patches that biology 
implemented over evolution’s punctuated trudge through functional space. Of 
course, biology doesn’t owe anything to a theorist. But I hope evolution also 
found some controllable knobs that we can discover.

 

L U I Z  P E S S O A ,  

U N I V E R S I T Y  O F  M A R Y L A N D ,  C O L L E G E  PA R K 

 My guess is that the brain is not as uncontrolla-
ble as the weather! In my view, the brain is a complex 
system that works in a highly distributed, heterarchi-
cal manner (i.e., lacking a clear hierarchy). Because it 
works in an integrated way with the body and environ-

ment, brain signals circulate in ways that are extremely hard to predict. But I 
wouldn’t go as far as viewing it as uncontrollable because of the inextricable 
link between brain and life. Brain and body systems are self-maintaining and in 
a continual process of homeostasis, which stabilizes their dynamics to remain 
within bounds that are compatible with life.

K A N A K A  R A J A N ,  H A R VA R D  U N I V E R S I T Y

All cognition is dynamic, and the engine that pro-
duces cognition—the brain—is a complex dynamical 
system. Elegant theories based on the physics of large 
networks of idealized neurons, some of which I am 
proud to have written myself, have modeled the brain 
as a chaotic system. (Although, unlike the Lorenz 

attractor, which is a low-dimensional system described by three variables, neu-
ral activity in brains is thought to be more consistent with high-dimensional 
chaos.) In the face of all this chaotic activity produced internally by neural cir-
cuits in the brain, how do we manage to think or behave cogently? It turns out 
that neural circuits can actively turn down their intrinsically generated chaos 
when paying attention to even subtle sensory inputs. Interestingly, this mecha-
nism—or phase transition—was theorized first and then verified experimentally 
through recordings from a number of brain areas. I think that this ability sup-

Big picture • 53



press intrinsic chaos is due to how we can think and behave, avoiding both 
hallucinatory oblivion and reflexive entrainment to our inputs or environment. 
This is just one of the ways by which the chaos in our brain is a feature we can 
control and not a maladaptive “bug” we need to quell.

C H R I S T O P H E R  R O Z E L L ,  

G E O R G I A  I N S T I T U T E  O F  T E C H N O L O G Y 

The brain is an enormously complex system, and 
(like the weather) it may be impossible to exert precise 
control over it at scale. But is that level of control nec-
essary? Extending the weather analogy a little further, 
we build houses with a locally controlled environment 

that keeps the temperature in a comfortable range. Clinically, we have multiple 
examples of neuromodulation approaches where targeted stimulation doesn’t 
“control” the brain precisely but still influences brain state enough to reduce 
tremor, seizure activity or depressive moods. Scientifically, approaches such 
as optogenetics have produced meaningful insight even in their basic form. 
Empirically, it seems we can make meaningful clinical and scientific progress 
without full control of the brain.

O L A F  S P O R N S ,  I N D I A N A  U N I V E R S I T Y 

 Is the brain the sort of system that is predictable 
or controllable?  My answer would be: It depends on 
what you mean by “prediction” and “control.” There 
are certainly many examples of a specific perturba-
tion having a predictable effect or outcome, and there 
has been strong emphasis in neuroscience on charac-

terizing such cause-effect couplings. But the brain is more than that, a growing 
realization that requires a shift in thinking and perspective. I tend to approach 
the brain as a complex system consisting of a huge number of interconnected 
elements or neurons. When those elements become active, their individual 
states become entangled or mutually dependent, thus creating high-dimen-
sional informational structures that we are just beginning to glimpse and 
understand. This collective action of many of the brain’s elements results in a 
continuous flow of activity that underpins cognition and behavior. The system 
has some level of predictability—consistent topography, patterns of synchrony 
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and dimension reduction, for example. Brains are far from random, and this 
allows recognizable features to emerge. But, as for all truly complex systems, 
there’s a limit to prediction and control. For example, predicting specific brain 
states far in advance, similar to forecasting the weather over a period of weeks 
or months, is fundamentally impossible, as nonlinearities and chaotic fluctu-
ations quickly take over. For those who want absolute control, this may seem 
an insurmountable challenge. But I see in it something far more comforting, 
even liberating. The brain’s complexity opens endless possibilities of creation 
and reconfiguration of patterns in space and time—and we have no way of pre-
dicting when and where they will occur.

G E O R G E  S U G I H A R A ,  

U N I V E R S I T Y  O F  C A L I F O R N I A ,  S A N  D I E G O 

 As an ecologist and a wannabe neuroscientist, 
I think this is a super exciting area for dynamical 
systems thinking. Clearly the genie is out of the bot-
tle with respect to prediction and understanding, 
and perhaps with regard to control as well: Witness 

recent results that try to figure out which of many possible brain-stimulat-
ing electrodes will cause the right effects in ways that circumvent the need 
to try them one by one. Here, researchers predicted the effects of targeted 
brain-area stimulation from resting activity using a nonlinear dynamical cau-
sality test (convergent cross-mapping). It’s a great step, and beyond it there’s 
so much untapped potential.

For instance, being chaotic (and thus nonlinear) means that you can’t really 
think of the individual parts of a dynamic system as being separate. This is what 
mathematicians would call “nonseparable,” meaning you can’t formally study 
one piece independently of others. Flipped around, this interdependence has 
huge advantages because with nonlinear dynamics and chaos in general, any 
one part of a dynamic system can have information about all of the other parts. 
This enables us to recreate a shadow version of the whole system from just one 
piece if it. In ecology, this has enabled us to predict future states of systems 
such as salmon populations, even when we don’t have access to measures of all 
the causal variables. Taking this a step further, because multiple shadow ver-
sions are possible, the same information can be represented simultaneously in 
factorially different ways, which is something one might imagine in how the 
brain works. I anticipate that this and other dynamical systems approaches will 
figure prominently in the quest to understand and treat the brain.
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Data-sharing and

open neuroscience



Neuroscience is in the midst of a major culture shift. Data, 
once a private asset to be mined only by its creators, is rap-
idly becoming a resource to be shared. To increase data 
accessibility and reuse, U.S. federal funders have required 
since January 2023 that grant applicants include a plan for 
how they will manage and store their data. Though widely 
welcomed, the move has come with growing pains. This 
series of scientist-written essays explores some of the 
benefits and challenges of data-sharing that researchers 
have encountered along the way.
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Incentivizing data-sharing  

in neuroscience: How about  

a little customer service?

B Y  M A R YA N N  M A R T O N E

Simply making data publicly available  

isn’t enough. We need to make it easy 

—that requires community buy-in.

B Y  R U S S E L L  P O L D R A C K

How scuba diving  

helped me embrace  

open science

B Y  T E D  S AT T E R T H W A I T E
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Incentivizing data-sharing  
in neuroscience: How about  
a little customer service?

ILLUSTRATION BY DANIEL LIÉVANO
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To make data truly reusable,  

we need to invest in data curators,  

who help people enter the  

information into repositories.

B Y  M A R YA N N  M A R T O N E , 

P R O F E S S O R  E M E R I TA ,  U N I V E R S I T Y 

O F  C A L I F O R N I A ,  S A N  D I E G O

A 
growing number of funder and journal policies 
now require neuroscientists to share the data they 
produce. But to truly reap the benefits, data must 

be shared well—no easy feat in neuroscience, which gen-
erates a multiplicity of complex data types across spatial 
scales. What will motivate neuroscientists to spend the time 
and resources required to make their shared data truly use-
ful to others? Because without adequate support, the new 
data-sharing policies are in danger of becoming simply a 
“box-checking” exercise.

If we really want to change the culture around data man-
agement and sharing, we must focus on improving the 
data submission experience. In these early, crucial days of 
wide-scale data-sharing, we must encourage repositories 
to take a more customer-service-oriented approach to data 
submission and offer the necessary support to do so. To be 
most effective, repositories must work to guide and assist 
researchers through the submission process and not merely 
point them to documentation or provide feedback about 
where they failed.

Thanks to investments in large brain projects and organi-
zations such as the International Neuroinformatics Facility, 
neuroscience has many of the pieces in place to make shared 



data useful. Researchers have developed a set of 
guidelines for data reuse, known as “FAIR”: find-
able, accessible, interoperable and reusable. 
And neuroscience-specific repositories exist to 
serve specific data types, neuroscience domains 
or geographical regions. In recent years, these 
investments have also spurred the development 
and adoption of neuroscience-specific standards 
such as the Brain Imaging Data Structure (BIDS), 
Neurodata Without Borders, the National Insti-
tutes of Health’s Common Data Elements and 
Common Coordinate frameworks. By supporting 
these standards, repositories are seeding an eco-
system of tools around particular data types.

But for this infrastructure to pay off, data pro-
ducers have to be both willing and able to populate 
these resources with standardized, well-curated 
data. The fact remains that preparing data for 
a repository, especially one that requires strict 
adherence to data and metadata standards, is a 
significant burden that falls asymmetrically on 
the investigator. If the burden is perceived to be 
too great relative to the rewards, researchers have 
the option to go elsewhere, such as a generalist 
repository with few submission requirements. 
Indeed, some repositories have lowered their 
requirements to ensure they still have customers, 
but the data they house are far less useful.

Fully preparing data for publication requires 
skills that researchers rarely possess. Data pro-

ducers typically have a deep understanding of the 
data but not the mindset, knowledge or resources 
to adhere to data and metadata standards that 
optimize data for reuse. Researchers often sub-
mit poor-quality metadata, for example, as work 
from my group and others has shown. I don’t 
believe that simply providing researchers with 
better training in data management or data sci-
ence will solve the problem.

Instead, we need to deploy professionals, such 
as knowledge engineers and data curators. Cura-
tors can format and document data according to 
the standards in place at a specific data repos-
itory. They can review submitted data, engage 
with the submitters where necessary to ensure 
compliance and often provide additional ser-
vices, such as mapping metadata to controlled 
vocabularies or tagging data with keywords.

A 
few neuroscience repositories, such 
as EBRAINS (previously the European 
Human Brain Project Neuroinformat-

ics Platform), Stimulating Peripheral Activity 
to Relieve Conditions (SPARC), the Open Data 
Commons for Spinal Cord Injury and the Open 
Data Commons for Traumatic Brain Injury, have 
blazed a trail and already invested in curators to 
improve the consistency and quality of submitted 
data. Informal surveys show that investigators 

 “We need to deploy professionals, such as 

knowledge engineers and data curators.”
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are often surprised by the positive impact cura-
tion has on their work—their data are now “FAIR,” 
not only to the community, but to the originating 
lab. When a postdoctoral researcher leaves, their 
data can be reliably found, accessed and under-
stood. And as researchers work with curators, 
they start to appreciate how the requirements 
of a repository—including the use of identifiers, 
metadata, specific standards and data dictionar-
ies—serve data management overall, and they 
begin to develop practices within their own lab-
oratories to facilitate sharing.

If researchers are supported properly, sub-
mitting their data to specialized neuroscience 
repositories provides practical training to 
empower effective sharing across the data life-
cycle. It catalyzes a feedback cycle in which 
benefits, tools and knowledge flow back from the 
repository to the submitting laboratory and back 
out to other users, whether human or artificial 
intelligence, in the form of higher-quality, FAIR 
data. Everybody wins.

My experience suggests this approach is 
effective. SPARC has some fairly stringent data 
requirements; because the NIH project collects 
high-quality and varied data on the interaction of 
the autonomic nervous system with end organs, 
it uses a cross-modality data standard called the 
SPARC Data Structure, based on BIDS, to orga-
nize the variety of data submitted. In the early 
days, scientists submitting data found the pro-
cess frustrating and labor intensive, leading to 
many angry emails. While the technical team 
worked to improve the infrastructure, the cura-
tors worked to establish good relationships with 
the investigators, acknowledging when the pro-
cess was difficult and assisting them over any 

barriers. Over time, curators observed that estab-
lishing a respectful, supportive relationship with 
data submitters rendered their experience much 
less burdensome. And despite early significant 
frustrations, when surveyed, many investiga-
tors indicated that they intend to continue using 
SPARC as their data-sharing platform even after 
their SPARC-specific funding ends.

Human curation is expensive and hard to 
scale, and funders are often reluctant to pay for 
it. But I don’t believe that this level of human sup-
port will be needed forever. In the SPARC project, 
for example, a young investigator, Bhavesh Patel, 
seeing the effort required to organize and upload 
data, developed a software wizard called SODA to 
automate file-level operations and to guide the 
researcher step by step through the process. As 
researchers started to understand what was being 
asked of them and began using SODA, the pro-
cess became more efficient for both submitters 
and curators. We can expect the rapid advance of 
AI to have a significant impact on curation, data 
integration and other data challenges.

But in the meantime, we need good data, and 
that will come from well-curated, standardized 
and well-managed data in specialist repositories. 
Reducing the burden on the data submitter, not 
by lowering requirements but by investing in cus-
tomer-service-oriented curation, will go a long 
way toward unleashing the full power of data sci-
ence on this most complex of organs, the brain.

Disclosure: Martone is on the board of directors and 
has equity interest in SciCrunch Inc, a tech startup 
out of the University of California, San Diego that 
develops tools and services for reproducible science.
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Simply making data publicly 
available isn’t enough. We need 
to make it easy—that requires 
community buy-in.

ILLUSTRATION BY DANIEL LIÉVANO
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I helped create a standard  

to make it easy to upload, analyze  

and compare functional MRI data.  

An ecosystem of tools has since grown 

up around it, boosting reproducibility 

and speeding up research.

B Y  R U S S E L L  P O L D R A C K ,  

C O G N I T I V E  N E U R O S C I E N T I S T, 

S TA N F O R D  U N I V E R S I T Y

T
he sharing of data collected in scientific studies is 
increasingly viewed as an important way to make 
science better. It helps maximize the benefits that 

accrue from the data (which are often collected using tax-
payer funds); it enables larger studies by aggregating across 
many smaller datasets; and it enables researchers to check 
the results from published papers to see if they hold up, 
using the same or different analysis methods.

But shared data provide such benefits only if they are 
organized in such a way that other researchers can use 
them effectively. A humorous YouTube video, “Data Shar-
ing and Management Snafu in 3 Short Acts,” by the NYU 
Health Sciences Library in New York City, demonstrates 
how data-sharing can go wrong. In this animated video, one 
researcher (played by a sad panda) requests data from another 
researcher from their paper recently published in the jour-
nal Science. After much back and forth, the researcher finally 
provides the data, leading to the following exchange:

— I received the data, but when I opened it up it was in hexa-
decimal [an indecipherable digital format].

— Yes, that is right.
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—  I cannot read hexadecimal.

— You asked for my data, and I gave it to you.  
I have done what you asked.

My group has experienced firsthand the 
importance of data organization. About a decade 
ago, inspired by Michael Milham and his col-
leagues in the 1000 Functional Connectomes 
Project, we started sharing brain imaging data 
through a project called OpenfMRI. In that early 
project, researchers sent us datasets to be shared, 
and a data curator in our group had to reorga-
nize their data to match our in-house 
organization scheme. This reor-
ganization often required 
extensive back-and-forth 
between the curator and 
the owner of the data.

In 2015, we received 
funding from the Laura 
and John Arnold Foun-
dation to expand this 
project, which ultimately 
became the OpenNeuro 
data archive, an open platform 
for sharing magnetic resonance 
imaging (MRI), positron emission tomog-
raphy (PET), magnetoencephalography (MEG) 
and electroencephalogram (EEG) data. Because 
we wanted to be able to accept data broadly with-
out requiring a large team of curators, we decided 
to develop a data organization standard that any 
researcher could use, enabling them to upload 
their data without the need for human curation. 
We realized that this would be successful only if 
we got many researchers in our community on 
board, so we worked with a large number of peo-

ple to develop a new framework that we called 
the Brain Imaging Data Structure (BIDS). It took 
about a year to develop the first version of BIDS, 
which was published in the journal Scientific 
Data in 2016.

So what is BIDS, exactly? It’s really two things. 
First, it’s a scheme for naming and organizing the 
many files that make up a brain imaging data-
set. My lab uses MRI. BIDS tells us how to name 
the files that are generated during brain imaging 
experiments and how to set up the folders that 
the different kinds of data will go into. BIDS also 

provides a scheme for how to organize 
the metadata that describe how 

the data were collected. Each 
image file in a BIDS dataset 

has an associated file that 
contains detailed infor-
mation about how the 
image was collected.

Importantly, BIDS 
specifies the vocabulary 

that can be used to name 
each parameter. For exam-

ple, “repetition time” is an 
important variable in MRI experi-

ments, and in the literature it is referred to 
in many different ways—“Repetition Time,” “RT” 
and “TR,” for example—and can be expressed in 
seconds or milliseconds. BIDS dictates the spe-
cific term used to define this value in the metadata 
(“RepetitionTime”), as well as the units (seconds). 
To anyone who isn’t an MRI aficionado, this level 
of detail probably sounds immensely boring, but 
it turns out to be essential if humans or machines 
are to read MRI datasets without any ambiguity 
about how the data were generated.

“By various  
estimates, there are  

hundreds of thousands  
of datasets in the wild that  

have been converted  
into the BIDS  

format.”
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P
art of BIDS’ success stems from its strong 
community-driven character: Deci-
sion-making is led by an elected steering 

group, and its ongoing development and mainte-
nance is supported by a group of nine volunteers, 
along with many other contributors. This kind of 
community organization requires a lot of time 
and effort and a willingness to compromise for 
the greater good.

The BIDS community has grown to be very 
large, with several hundred researchers having 
contributed to the effort in some way. By various 
estimates, there are hundreds of thousands of 
datasets in the wild that have been converted into 
the BIDS format, with data from more than 30,000 
people available via the OpenNeuro archive 
alone. The ease of reusing a BIDS dataset has led 
to many published reuses, helping to maximize 
the benefits of those data for the community and 
the world.

In one notable study designed to assess repro-
ducibility, 70 groups of researchers analyzed the 
same large functional MRI (fMRI) dataset distrib-
uted in the BIDS format. The results varied widely 
depending on analysis workflows, highlighting the 
need to understand how analytic variability affects 
scientific results. BIDS made it possible for each 
of the participating groups to take the dataset and 
immediately understand how to process it; with-
out BIDS, the degree of communication required 
to explain the data would have been overwhelm-
ing for such a large number of groups.

Yet another great benefit of BIDS is the ecosys-
tem of tools that has grown around it. This suite 

of community-generated “BIDS Apps” makes it 
easy to process the data in various ways. These 
apps enable users to take commonly used imag-
ing analysis software, such as the FreeSurfer tool 
for anatomical processing, and easily apply it to 
their BIDS dataset, rather than having to refor-
mat the data to meet the distinct requirements 
of each software package. One such BIDS App for 
the preprocessing of fMRI data, fMRIPrep, has 
become remarkably popular, with several thou-
sand uses each week over the past year. Because 
BIDS Apps are packaged with all of the required 
additional software libraries, they also provide a 
greater degree of reproducibility across different 
computer platforms.

BIDS also has a defined process for exten-
sions into new data types, which supports growth 
into new communities. Community members 
can propose extensions that can then be devel-
oped through discussion with the maintainers 
and the steering group. This process has led to 
support for many new data types, ensuring the 
continued growth and relevance of the standard, 
and demonstrates the strength of the community 
model for data standards.
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How scuba diving  
helped me embrace  
open science

I L L U S T R AT I O N  B Y  D A N I E L  B A R R E T O

\
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Our lab adopted practices  

to make data- and code-sharing feel 

safer, including having the coding 

equivalent of a dive buddy. 

B Y  T E D  S AT T E R T H W A I T E ,  

M C L U R E  A S S O C I AT E  P R O F E S S O R 

I N  P S Y C H I AT R Y  A N D  B E H AV I O R A L 

R E S E A R C H ,  U N I V E R S I T Y  

O F  P E N N S Y LVA N I A

I
t is difficult to find someone in computational research 
who will publicly say they don’t support open-science 
practices. By increasing transparency, open science 

accelerates progress and enhances equity. Sharing data and 
code makes the most efficient use of data collected from 
volunteer research participants, maximizes the return on 
public investments and helps investigators at under-re-
sourced institutions.

Open science also breeds careful science: Researchers 
who know that their work will be open for external review 
may be less likely to cut corners. At the same time, though—
despite support for open science and all its concomitant 
benefits—fear of this scrutiny can deter even well-inten-
tioned investigators from fully participating.

To overcome this hurdle, my lab has adopted practices 
to make data- and code-sharing feel safer. Notably, we cre-
ated a reproducibility buddy system—inspired by the buddy 
system in scuba diving, in which divers pair up to moni-
tor and help each other in case of trouble. The practice is 
time-consuming, but it has helped us catch mistakes early 
and has made lab members feel more comfortable sharing 
their work.
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The impetus to develop this system grew from 
my own experience as a new faculty member. My 
biggest hang-up in embracing open science was 
simple: fear. Computational neuroscience can 
be complicated—lots of data and lots of code, all 
with many potential failure points. Code writ-
ten by professional software developers includes 
approximately 20 to 70 bugs per 1,000 lines of 
code; code written by a brilliant but inexperi-
enced graduate student likely includes far more. 
In a computational project with a complex code 
base, it is reasonable to assume there are many 
undiscovered bugs or errors.

The consequences of finding an error after 
results are published can be serious. Shortly 
after I started my lab, I found an error in a paper 
after it was published in a high-profile journal. 
Even though we caught the error ourselves, I was 
mortified. And the process of finding the error, 
understanding what results it affected, getting 
all stakeholders on board and working with the 
editor to correct the record was astonishingly 
time-intensive and personally draining. I imag-
ine the process would have been even more 
stressful had an outside party relying on open 
code reported the error. Along the way, I also 
received an implicit message from colleagues: 
One erratum, you can still probably get tenure. 
Two? I wouldn’t bet on it. This is not a culture that 
drives one to embrace open science.

O
ver time, we have changed the way we 
work so that open science feels less 
scary. Perhaps the single most useful 

among these is our “reproducibility buddy sys-
tem.” This framework—which I am sure is not 
novel—occurred to me after scuba diving. Scuba 
diving is generally quite safe but requires sig-
nificant equipment because of the inescapable 
reality that we cannot breathe under water. To 
reduce potentially dangerous errors, one always 
dives with a dive buddy, who is responsible for 
helping check equipment and assist during a dive 
if problems arise.

Compared with a basic scuba outing, most 
academic projects are far more complex. If we 
are required to have a buddy to dive, why don’t we 
have one for computational science?

The reproducibility buddy, which my lab 
members lovingly abbreviate to “reproducibili-
buddy,” serves a roughly analogous role.  At the 
start of a project, we identify a team member to 
reproduce the project. To align incentives, this 
person is almost always the second author of the 
published paper. The reproducibility buddy repli-
cates the work at several key checkpoints, going 
over every line of code and making sure they can 
run the code and get the same results.

“Trainees report that the buddy system  

feels like a welcome safety net.”
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Importantly, this process begins early in a proj-
ect; nothing is worse than finding an error after 
a set of results has been polished to a high gloss 
ahead of submission to a journal. For example, 
one of the first major checkpoints occurs before 
we generate any results—we first reproduce all the 
nitty-gritty steps required to aggregate the data. 
Later, we ask the buddy to try to reproduce the 
first main result that becomes the anchor for any 
subsequent manuscript. Ahead of submission, 
the first author comprehensively cleans and com-
ments on all code and creates a wiki that provides 
an overview of how to use it; the buddy’s task is to 
reproduce the primary results using only this doc-
umentation. Finally, this process is updated as the 
work evolves in the revision process.

Sadly, this all takes time. Writing clean, 
well-commented code that can be easily repli-
cated takes longer than hacked-together one-offs. 
Even under ideal circumstances, performing the 
replication itself is labor intensive. As in so many 
other domains, there is a real speed-versus-ac-
curacy trade-off. Furthermore, the system is far 
from foolproof; results can be “reproducible but 
wrong”—code that runs and returns the reported 
result but is based on flawed scientific logic or a 
misunderstanding of the output.

When we first began piloting the buddy sys-
tem five years ago, I anticipated pushback from 
the team. To my surprise, the opposite has 
occurred. Trainees report that the buddy system 
feels like a welcome safety net. Although repli-
cating someone else’s work is time-intensive, it 
is also a great exercise in code review that helps 
both parties learn from each other. Perhaps the 
single most common reaction is relief: The buddy 
system allows everyone to sleep better at night, 

knowing that their results have been vetted. With 
time, I have repeatedly learned that when we fail 
to use the checkpoints built into this buddy sys-
tem, we do so at our own peril: Errors that should 
have been caught early on are found later and are 
far more costly to correct.

Implementing specific practices for reproduc-
ibility has helped our lab members be less afraid 
and even love open computational science. How-
ever, it is not a replacement for systematic change.  
As detailed elsewhere, there are multiple oppor-
tunities to encourage open science at every stage 
of the scientific life cycle. Granting agencies can 
prioritize data-sharing and re-use, open code and 
replication of findings. Top journals could expand 
options for published data descriptors to ensure 
credit for sharing data. Editors could enforce 
standards for data- and code-sharing, allow 
for registered reports and encourage updated 
results. Academic appointment and promotion 
committees could de-emphasize numerical mea-
sures of productivity and instead reward open 
practices and results that replicate. Perhaps most 
ambitiously, academic journals could compen-
sate peer reviewers, making it financially feasible 
for results to be independently replicated as part 
of the review process. Although there have been 
encouraging developments on many fronts in 
open science, changing the existing consensus 
is inevitably slow. For now, we find that—as in 
diving—doing open science with a buddy is both 
safer and more fun.
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Looking ahead • 71

L O O K I N G  A H E A D : 

What do you  
think the field of 
neuroscience should 
prioritize for the  
next 10 to 20 years?

N I C O L E  R U S T,  P R O F E S S O R  O F  P S Y C H O L O G Y, 

U N I V E R S I T Y  O F  P E N N S Y LVA N I A ;  

C O N T R I B U T I N G  E D I T O R ,  T H E  T R A N S M I T T E R

The field is increasingly embracing the notion 
that the brain is a “complex dynamical system” where 
causes lead to effects that feed back as causes—this 
happens through feedback loops within the brain 

and interactions between the brain and the environment. From ecology, engi-
neering and other fields, we know that when complex dynamical systems go 
awry, they can be exceedingly difficult to restore. Tackling that challenge will 
be the key to developing treatments for the billions of people with brain con-
ditions of nearly every type, from Parkinson’s disease to psychosis.



A N T H O N Y  Z A D O R ,  P R O F E S S O R  O F  B I O L O G Y,  

C O L D  S P R I N G  H A R B O R  L A B O R AT O R Y ; 

C O N T R I B U T I N G  E D I T O R ,  T H E  T R A N S M I T T E R

How do brains compute? Neuroscientists have 
learned a tremendous amount about the “parts” of 
the nervous system: the molecules and cells that 

make up the brain. What we still haven’t figured out is how these parts work 
together to enable animals to outperform artificial intelligence on almost all 
tasks that require interaction with the real world: planning, sensorimotor 
interactions and balancing multiple goals—tasks that define an “embodied Tur-
ing test.” Tremendous advances in computational and circuit neuroscience, as 
well as in AI, put these questions within our reach in the next decade or two.

J O S H U A  R .  S A N E S ,  P R O F E S S O R  O F  M O L E C U L A R 

A N D  C E L L U L A R  B I O L O G Y,  H A R VA R D  U N I V E R S I T Y ; 

C O N T R I B U T I N G  E D I T O R ,  T H E  T R A N S M I T T E R

Mechanistic basic research on the human brain. 
We have learned enough from model systems over 
the past few decades that we can now apply these 
tools and insights to the human brain. Emerging 

or rapidly improving methods include organoids and assembloids, neuro-
imaging, extracranial stimulation (TMS, tDCS) and recording (EEG, MEG), 
single-unit recording over days or weeks in surgical patients, multiomics and 
spatial transcriptomics on postmortem tissue, transplants of humans neu-
rons into mice (not chimeras), and brain-computer interfaces. 
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R U S S E L L  P O L D R A C K ,  C O G N I T I V E  N E U R O S C I E N T I S T, 

S TA N F O R D  U N I V E R S I T Y ;  C O N T R I B U T I N G  E D I T O R , 

T H E  T R A N S M I T T E R

I think that a major priority for the next 10 to 
20 years should be a shift from the current focus 
on data to a heavier focus on theory.  The past two 
decades have seen the development of an amazing 

set of tools for the measurement and manipulation of neural systems, and 
with those tools has come an onslaught of data. Unfortunately, the initial opti-
mism that more data would provide direct insight into brain function and 
structure has been dashed on the rocks of the immense complexity present in 
those data. I think that we need to balance the focus on increasingly sophis-
ticated biological tools with more focus on the development of theories that 
can help us understand these massive data.  

S H E E N A  J O S S E LY N ,  S E N I O R  S C I E N T I S T,  

H O S P I TA L  F O R  S I C K  C H I L D R E N ;  

C O N T R I B U T I N G  E D I T O R ,  T H E  T R A N S M I T T E R

I’d like to take a step back because I am not 
convinced that it is a good idea to set priorities 
for neuroscience. I appreciate that several might 
answer this question by saying “translational stud-

ies, because we need to help those with brain disorders.” I agree with the 
sentiment but would argue that for the vast number of brain disorders, we 
have little basic knowledge to translate. Instead, I think the most progress 
in understanding how the brain works (and therefore what to do when the 
brain isn’t working so well) is built by encouraging researchers to follow their 
curiosity. We never know when and from where the next big potentially life-al-
tering finding will be made. I would hate to see the potential ground-breaking 
discoveries of my colleagues limited by a top-down imposition of commit-
tee-defined priorities.
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Defining 

cell types
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Defining cell types  • 75

This series explores how new high-throughput  
technologies are changing the way we define brain  
cell types—and the challenges that remain.

Welcome to the second single-cell 

revolution: New high-throughput 

technologies are transforming  

how we define neurons

B Y  J O S H U A  R .  S A N E S

Where do cell states  

end and cell types begin?

B Y  A N N E  E .  W E S T

Building a brain: How does it generate  

its exquisite diversity of cells?

B Y  T O M A S Z  N O W A K O W S K I  A N D  K A R T H I K  S H E K H A R
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Welcome to the second  
single-cell revolution:  
New high-throughput 
technologies are transforming 
how we define neurons

C O U R T E S Y  O F  T H E  A L L E N  I N S T I T U T E

Cell census: The mouse brain 
has more than 5,000 cell 
types, categorized here based 
on their gene-expression 
patterns.
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This ongoing essay series will explore 

questions these technologies raise,  

as well as opportunities they provide  

for understanding development, 

evolution and disease.

Defining cell types • 77

B Y  J O S H U A  R .  S A N E S ,  P R O F E S S O R 

O F  M O L E C U L A R  A N D  C E L L U L A R 

B I O L O G Y,  H A R VA R D  U N I V E R S I T Y ; 

C O N T R I B U T I N G  E D I T O R ,  

T H E  T R A N S M I T T E R

A
lthough the brain has been an object of fascination 
for centuries, neurobiology as we know it origi-
nated with Santiago Ramon y Cajal’s magnificent 

descriptions and drawings of neurons in the late 1800s. His 
work, which spanned nearly every part of the nervous sys-
tem of dozens of invertebrate and vertebrate species, set the 
field’s agenda for the next hundred years: the detailed anal-
ysis of single neurons, initially morphologically and later 
electrophysiologically. It was the first single-cell revolution.

By the end of the 20th century, adherence to this single- 
cell agenda—coupled with advances in molecular methods, 
including biochemistry, molecular biology, immunochemis-
try and transgenesis—had revealed the basics of neuronal 
structure, function and development. Despite these trans-
formative advances, however, it became increasingly clear 
that to truly understand how the brain works—and how it 
fails in neurological and psychiatric diseases—would require 
new approaches. To make sense of circuit architecture and 
pinpoint cells that might be defective in brain diseases, for 
example, researchers would need to be able to study enough 
single neurons to classify them into types. That would 
require the capacity to analyze hundreds to thousands of 
single cells, preferably simultaneously.



That has finally become possible, with the 
invention over the past 20 years of a series of 
massively parallel high-throughput single-cell 
methods. Today, researchers can molecularly 
profile cells using high-throughput single-cell 
and single-nucleus RNA sequencing (scRNA-seq 
and snRNA-seq). They can monitor neuronal 
activity with multi-electrode “neuropixel” type 
probes and genetically encoded calcium and 
voltage indicators. They can visualize neuronal 
structure and connectivity with serial-section 
electron microscopy or optically with super-res-
olution and expansion microscopy. In each case, 
they can assay hundreds to thousands of cells in 
parallel sufficiently quickly and inexpensively 
(relatively speaking) to classify and characterize 
neurons and unravel neural circuitry more com-
prehensively than ever before.

 

In other words, we are now in the midst of a sec-
ond single-cell revolution.

This new capacity to accurately classify cell 
types on a broad scale is revolutionizing how we 
study neural circuits, providing new insights into 
brain development and evolution, and opening 
new avenues for understanding brain diseases. 
But to fully realize its potential, the field still 
needs to grapple with a number of questions, 
such as what the most appropriate level to clas-
sify cells is and how closely different facets of 
cell-type data align. This introductory essay sets 
the stage for an ongoing series that will exam-
ine the uses of this technology for neurobiology, 
along with challenges that remain.

Brain maps: Researchers mapped transcriptionally defined cells across different regions of the brain.
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O
f these new high-throughput methods, 
none has had a greater impact than sc/
snRNA-seq. The method was invented 

independently and nearly simultaneously by 
three groups almost 10 years ago—Drop-seq by 
Evan Macosko and his colleagues, inDrop by 
Allon Klein and his colleagues, and 10X/Gem-
Code by Grace Zheng and her colleagues. In all 
three platforms, mRNA from thousands of sin-
gle cells or nuclei is captured and barcoded, then 
reverse-transcribed, amplified and sequenced 
in a single reaction. Cells with similar transcrip-
tomes can be computationally grouped into 
candidate cell types. Newer methods provide 
similar results at an even lower cost than the 
original techniques. By now, researchers have 
profiled more than a billion single cells.

The first successful effort to use scRNA-seq 
to generate cell-type atlases of complex tissues 

used the mouse retina, a particularly accessible 
part of the brain; we now know that it contains 
some 130 neuronal types. Researchers have since 
applied the method to numerous other tissues 
and species. Over the past few months, Science 
and Nature have published special issues detail-
ing the largest results from these efforts to date, 
including expansive atlases of the human and 
mouse brain.

The atlases, in turn, provide a foundation for 
addressing many important biological issues: 
What cell types are affected in neurological and 
psychiatric diseases? Where are the genes that 
predispose someone to or cause disease to be 
expressed? How do cell types that are resilient 
or vulnerable to insult differ? How do neural cell 
types diversify, differentiate and mature? How do 
activity-dependent and activity-independent fac-
tors influence these processes? Which cell types 
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are evolutionarily conserved and which arise to 
meet the needs of particular species?

Sc/snRNA-seq is still relatively new—it has 
been in wide use for just over five years—so stud-
ies have so far provided only partial answers to 
these questions. To fully address them, the field 
must overcome several technical and conceptual 
challenges, set forth below.  Individual essays in 
this ongoing series will explore some of these 
specific questions in greater depth, including 
how cell-type data offer new insight into devel-
opment and evolution, how to apply different 
computational methods for grouping cells, and 
the question of cell type versus state.

•  	 L O C A L I Z I N G  C E L L S :  Sc/snRNA-seq techniques 
begin by dissociating cells or nuclei, erasing 
information on a cell’s location within the 
tissue. This is unfortunate because neurobiol-
ogists routinely rely on location—for example, 
to map connectivity between brain areas or 
target cells for recording. New “spatial tran-
scriptomic” methods provide gene expression 
profiles of cells within tissues, using either 

multiplexed in situ hybridization to query a 
select set of genes (e.g., MERFISH) or RNA 
capture followed by sequencing (e.g., STAR-
map). Although these methods detect fewer 
genes than scRNA-seq does, they have become 
an indispensable adjunct to tissue profiling.

•  	 H A R M O N I Z I N G  C R I T E R I A :  Many researchers 
viewed the first scRNA-seq-derived atlases 
with skepticism because it was unclear 
whether cell types defined by molecular crite-
ria corresponded to those that neurobiologists 
care about—structure, function and connec-
tivity. In the retina, these different aspects of 
cell types align very well. But questions remain 
about other brain regions. Methods that record 
a single neuron’s physiology, morphology 
and gene expression will help close this gap. 
Many to date are relatively low throughput, but 
combining calcium imaging with spatial tran-
scriptomics holds great promise.

•  	 M U LT I O M I C S :  The transcriptome has proven 
useful for classifying cells but can’t yet fully 
characterize them. RNA levels are imperfectly 

“We are now in the midst  

of a second single-cell revolution.  

This new capacity to accurately classify  

cell types on a broad scale is revolutionizing 

how we study neural circuits.”
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correlated with protein levels and do not reli-
ably distinguish among alternatively spliced 
isoforms. Moreover, they fail entirely to iden-
tify post-translational modifications, such 
as glycosylation, phosphorylation and many 
others, all of which are essential for neuronal 
function. This shortcoming has led to great 
interest in “multiomics,” in which RNA-seq 
is combined with other methods. Research-
ers have successfully combined RNA-seq and 
ATAC-seq, which assays chromatin accessibil-
ity, a key epigenomic measure. But single-cell 
proteomic assays have not been optimized or 
widely used, particularly in combination with 
other methods.

•  	 G R A N U L A R I T Y,  T Y P E S  A N D  S TAT E S :  Research-
ers have not yet settled on the optimal 
resolution for grouping cells. At one extreme, 
there could be as many neuronal types as 
there are neurons. At the other, there could 
be very few types—for example, only sensory 
neurons, interneurons and projection neu-
rons. Where is the sweet spot in between? 
This problem remains unsolved, with multi-
ple computational models proposed to group 
cells into types, types into classes and so on. 
Perhaps more troubling is that initial tran-
scriptome-based definitions of cell types made 
the implicit assumption that once animals 
reach adulthood, their transcriptomes are sta-
ble. Of course this is not true; neurons express 
different genes at different times, with major 
changes that depend on activity levels and 
patterns, hormones and more. Injury or dis-
ease lead to even greater changes. It remains 
challenging to distinguish these differences 
in cell state—meaning cells of the same type 
expressing different genes under different 
conditions—from differences in cell type.
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Where do cell  
states end and  
cell types begin?
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High-throughput transcriptomics  

offers powerful new methods for  

defining different types of brain cells.  

But we need to think more explicitly  

about how we use these data to 

distinguish a cell’s permanent identity 

from its transient states.

“‘Frogs are frogs and fish is fish, and that’s that!’ 
said the tadpole.” 

— L I O N N I  L .  ( 1 9 7 0 ) .  F I S H  I S  F I S H .  PA N T H E O N  B O O K S

I
n the children’s story “Fish is Fish,” a minnow and a 
tadpole celebrate their identity as fellow fish until the 
tadpole grows legs and hops out of the pond as a frog. 

The story reminds us that a collection of features observed at 
any one point in time is only a snapshot along the trajectory 
of any living thing, be it a cell or a more complex organism. 
Even if we introduced a subclassification of fish that includes 
both minnow and tadpole, without additional data these 
categories alone would not foretell that these creatures ulti-
mately head in radically different directions from each other.

Neuroscientists risk falling into the same trap when it 
comes to cataloging the diversity of cell types that make 
up the brain. Single-cell and single-nucleus RNA sequenc-
ing (scRNA-seq and snRNA-seq) have revolutionized our 
ability to resolve the brain’s heterogeneity—unsupervised 
algorithms can quickly classify cell types based only on the 
expression patterns of thousands of genes.

Despite its success, though, the reliance on transcrip-
tomics to define cell types comes with intellectual hazards. 

B Y  A N N E  E .  W E S T,  P R O F E S S O R 

O F  N E U R O B I O L O G Y  A N D  C E L L 

B I O L O G Y  A N D  A S S O C I AT E 

D I R E C T O R  O F  T H E  M E D I C A L 

S C I E N T I S T  T R A I N I N G  P R O G R A M , 

D U K E  U N I V E R S I T Y  S C H O O L  

O F  M E D I C I N E
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Like the fish story, defining cell types from 
transcriptomic snapshots assumes that a cell’s 
gene expression is relatively fixed in time. Yet 
decades of evidence show that neurons undergo 
widespread and robust changes in their tran-
scriptional programs in response to stimuli, 
including experience-driven neural activity. And 
these experience-induced transcriptional states 
can be quite persistent in contexts in which they 
mediate behavioral adaptability.

Given that gene-expression programs play 
a central role in defining both neuronal classi-
fication and cellular plasticity, how should we 
consider the question of where cell state ends 
and cell type begins?

Time-dependent transcriptional states are 
well understood in developmental biology. All 
the cells in an organism ultimately derive from 
the same source—a single fertilized egg—and all 
contain the same genomic DNA. Over the course 
of cell divisions and environmental exposures, 
progressive changes to the epigenome promote 
or restrict the expression of different genes, driv-
ing transcriptomic identities of distinct cell types.

Once established, epigenomic states can 
be remarkably persistent, such as the chroma-
tin landscape that keeps one X chromosome 
permanently inactivated in each female cell. 
High-throughput, single-cell transcriptomic 
technologies rely on the stability of genome regu-
lation to classify cells, and indeed, transcriptomic 
classifications of neurons overlap robustly with 
chromatin accessibility and DNA methylation 
patterns in single cells, supporting the premise 
of this classification strategy.

But the narrative of epigenomic inflexibil-
ity is inconsistent with current neuroplasticity 
research, which over the past 20 years has docu-
mented that numerous features of the epigenome 
can be modified by experience, even in termi-
nally differentiated, post-mitotic neurons. If 
such fundamental mechanisms of genome regu-
lation can change in a fate-committed cell, then 
researchers are left with an important question: 
Do differences in gene-expression programs 
always represent fixed cell types? Or could they 
also reflect transient cell states?

“Given that gene-expression programs  

play a central role in defining both neuronal 

classification and cellular plasticity, how 

should we consider the question of where cell 

state ends and cell type begins?”
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H
ow we think about this question is 
shaped by both culture and technology. 
The microglia field offers an exam-

ple of how naming conventions can influence 
how we interpret biological data. Historically, 
some groups referred to microglia in a way that 
implied static functional identities, akin to cell 
type, and others used language more reminis-
cent of cell state. A recent consensus paper on 
microglial nomenclature argues that the more 
static naming approach obscured an import-
ant aspect of microglial biology—that microglia 
transcriptomes are highly sensitive to the local 
environment. (Ironically, when describing neu-
rons, the authors made the same mistake they 
had warned against, referring to neuronal 
transcriptomes as “fixed and terminally differ-
entiated,” ignoring their potential for plasticity.)

The techniques researchers use to analyze 
transcriptomics data, notably cell-clustering 
algorithms, also shape how we think about cell 
identity. These algorithms were explicitly 
designed to find discrete gene-expression pro-
grams that differ between tissues and represent 
cell types. They tend to overlook more subtle 
gene-expression programs in scRNA-seq data, 
those that vary over time or within areas and 
may reflect cell state. But clustering algorithms 
can sometimes detect cell state from scRNA-
seq data as well—unpublished research suggests 
that they can identify neurons in a seizure state. 
Though this case represents a well-defined type 
of cell state, in which a single class of neurons is 
undergoing a precisely timed program of gene 
expression, it shows that the features we use to 
distinguish cell type from state may be less dis-
tinct than we think.

New computational approaches further sup-
port this idea. For example, Dylan Kotliar and 
his colleagues developed a mathematical model 
using matrix factorization that assumes cells 
can simultaneously express more than one gene 
transcription program, permitting cells to be 
assigned to more than one cluster. The research-
ers applied the model to snRNA-seq data from the 
visual cortex of mice that had been dark-adapted 
or exposed to light and showed they could iden-
tify activity-regulated transcriptional programs 
embedded both within and across cell-type iden-
tity clusters.

Studies that take a cell’s precise location into 
account also support a more complex picture, 
identifying  gene-expression programs that vary 
continuously across brain structures rather than 
in a discrete fashion. It remains to be resolved 
whether these gradient gene-expression pro-
grams should be conceptualized as subtypes of 
a cell type versus a single cell type that is vary-
ing its gene-expression state in response to its 
local environment. This question will become 
especially important as the field begins analyz-
ing a major tranche of the data from the National 
Institutes of Health’s BRAIN Initiative Cell Census 
Network (BICCN), published last October. These 
data will need to be placed into the context of 
brain circuits using spatial transcriptomics.

New experimental and computational meth-
ods will undoubtedly be essential in refining our 
understanding of cell types. But like the minnow 
and tadpole in the fish story, it will also be helpful 
to think outside the pond.
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Building a brain:  
How does it generate its 
exquisite diversity of cells?

I L L U S T R AT I O N  B Y  S I M O N  P R A D E S
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B Y  T O M A S Z  N O W A K O W S K I , 

A S S O C I AT E   P R O F E S S O R  

O F  N E U R O L O G I C A L  S U R G E R Y, 

U N I V E R S I T Y  O F  C A L I F O R N I A , 

S A N  F R A N C I S C O ;  A N D 

K A R T H I K  S H E K H A R ,  A S S I S TA N T 

P R O F E S S O R  O F  C H E M I C A L  A N D 

B I O M O L E C U L A R  E N G I N E E R I N G , 

U N I V E R S I T Y  O F  C A L I F O R N I A , 

B E R K E L E Y

High-throughput technologies  

have revealed new insights into  

how the brain develops.  

But a truly comprehensive map  

of neurodevelopment requires  

further advances.

D
iverse neurons and their equally diverse circuits 
are the foundation of the brain’s remarkable ability 
to process information, store memories, regulate 

behavior and enable conscious thought. High-throughput, 
single-cell profiling technologies have made it possible to 
classify these cells more comprehensively than ever before, 
offering a 360-degree view of the sheer magnitude of neural 
diversity in the mammalian brain. A recent effort to define 
the complete set of transcriptomic cell types in the adult 
whole mouse brain, for example, defined roughly 5,000 dis-
tinct cell types distributed across dozens of brain areas. This 
landmark accomplishment is a critical step toward inte-
grating information about function and connectivity, and 
extending similar efforts to the adult human brain.

But this impressive gestalt conveys little, if any, infor-
mation about how such diversity arises and develops in the 
first place. Single-cell atlases developed to date have been 
limited to a few points in time, focusing largely on the end-
point of neural development. How is this exquisite panoply 
of neurons generated and organized into precise and orderly 
circuits that last a lifetime? Providing the answer is the central 
task of developmental neuroscience. We want to understand 
the many transitions that unfold—where cells come from, 
the paths they take, and when terminal cell states emerge.
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The comprehensive nature of single-cell tech-
nologies offers tremendous promise for defining 
cell types and reconstructing the trajectories of 
gene expression that underlie their differentia-
tion. Initial efforts to apply these technologies to 
development, including in the prenatal human 
brain, hint at the insights these approaches can 
bring. Single-cell transcriptomics has helped 
map the diversity of neural progenitor cells, for 
example, most notably identifying progenitors 
that are expanded in humans, and their associ-
ated molecular adaptations. Further insights into 
development will require methods that reveal the 
specific history of every neuron type, including 
those that can more densely sample brain cells’ 
trajectories over time and novel approaches for 
tracking fate transitions in individual cells. These 
discoveries will in turn help us to understand 
neurodevelopmental conditions, many of which 
are associated with genomic variation, and neu-
rological disorders, such as brain tumors.

S
tudies of model vertebrates, such as 
rodents, frogs, fish and, most recently, 
primates, have generated important clues 

into how brain cells are born. The cardinal steps 
underlying brain development—neurogenesis, 
differentiation and the formation of initial synap-
tic connections—are largely regulated by intrinsic 
mechanisms encoded in the genome and do not 
require input from any extrinsic sensory experi-
ence. But external stimuli can extensively refine 
these circuits, so that each individual brain is 
custom-fitted to its unique external and inter-
nal worlds. Many genetically encoded pathways 
of brain development are remarkably conserved 

across the evolutionary tree, pointing to the 
ancient origins of the fundamental neurodevelop-
mental programs. Within this largely conserved 
scaffold, genetic variation abounds, underpin-
ning species-specific features.

Despite these transformative discoveries, our 
understanding of the mechanisms that instruct 
neuronal diversification, maturation and wir-
ing remains vastly incomplete. In the developing 
brain, neurons emerge from a limited pool of 
neural stem cells. Revealing the full picture of 
how neuronal types diversify and mature from 
their progenitors, we believe, will be significantly 
more challenging than simply classifying them. 
To understand the developmental history of any 
cell type, we need to know the evolving trajecto-
ries of the stem cells that contributed to that cell 
type, and to resolve the changes in molecular 
state, morphology, function, spatial location and 
connectivity along the way.

A single neural progenitor gives rise to many 
neuronal types through successive rounds of 
divisions, usually in a highly ordered, sequential 
manner. But neural progenitors come in diverse 
flavors. For example, mice have one type of radial 
glia, which produce one type of intermediate neu-
ronal progenitor. Ferrets, monkeys and humans, 
in contrast, have three or more types of radial 
glia, and these may produce even more types of 
intermediate neuronal progenitors. We still have 
a long way to go to understand how these differ-
ent cell types contribute to development.
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C
urrent efforts to catalog brain cell types 
only sparsely sample the many stages 
of development. Building a satisfying 

picture of this process demands much denser 
sampling—by roughly two orders of magnitude, 
both temporally and spatially—than what is cur-
rently underway. The scale and complexity of such 
efforts will be huge, relying on a comprehensive 
sampling of the developing brain. It will require 
the analysis of different animals at developmen-
tal time points that span all intermediate stages 
of cellular differentiation, ideally using methods 
that preserve information about cells’ locations 
in the developing brain. Large-scale data integra-
tion and machine-learning approaches will also 
play an important role in this quest.

An alternative to this dense sampling is to look 
for hints of a cell’s history in its epigenomic infor-
mation, in particular its DNA methylation, which 
can harbor permanent marks of transcription 
factors’ past activity. Or to employ tools that indi-
vidually “mark” cells with unique sequences that 
“track” a cell from a point of origin, where the 
barcode is introduced, to a terminal position in 
the adult brain. These powerful approaches can 
reveal relationships among cells long after they 
depart from their original progenitor cell and 
position. Another way is to look at the DNA muta-

tions that accrue in cells as they divide, creating a 
natural ticker tape to measure distances between 
cells in time. The complete lineage history is thus 
encoded within the genomes of individual cells, 
although it is challenging to comprehensively 
read out this information with currently available 
technologies.

In many cases, newly born neurons migrate 
long distances from their site of birth to pop-
ulate different brain regions. Deciphering the 
developmental history of neuronal types will 
require tracing these migratory paths and pin-
pointing the molecular states of precursors as 
they traverse them. Postnatal neuronal migra-
tion is one of the major differences between mice 
and humans, and an area of active investigation. 
Using spatially resolved genomic approaches to 
profile the developing brain will be an integral 
component of these efforts in the near future.

In the first essay in this series, author Joshua 
Sanes described two single-cell revolutions made 
possible by technological advances that revealed 
features of neurons that were missed or absent 
in previous assays or approaches. We believe that 
generating a comprehensive map of neurodevel-
opment will be a third revolution.

“Current efforts to catalog  

brain cell types only sparsely sample  

the many stages of development.”
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Knowledge 
graphs can help 
make sense  
of the flood of  
cell-type data

thetransmitter.org/defining-cell-
types/knowledge-graphs-can-
help-make-sense-of-the-flood- 
of-cell-type-data/

These tools, widely used  
in the technology industry,  
could provide a foundation  
for the study of brain circuits.

B Y  M I C H A E L  H A W R Y LY C Z ,  I N V E S T I G AT O R ,  

A L L E N  I N S T I T U T E  F O R  B R A I N  S C I E N C E
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What, if anything, makes 
 mood fundamentally  
different from memory?

I L L U S T R AT I O N  B Y  K O U Z O U  S A K A I

B I G  P I C T U R E :
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Big picture • 93

To better understand mood disorders 

—and to develop more effective 

treatments—should we target the brain, 

the mind, the environment or all three?

B Y  N I C O L E  R U S T,  P R O F E S S O R  

O F  P S Y C H O L O G Y,  U N I V E R S I T Y  

O F  P E N N S Y LVA N I A ;  C O N T R I B U T I N G 

E D I T O R ,  T H E  T R A N S M I T T E R

W
e readily (and reasonably) accept that the causes 
of memory dysfunction, including Alzheimer’s 
disease, reside in the brain. The same is true 

for many problems with seeing, hearing and motor control. 
We acknowledge that understanding how the brain supports 
these functions is important for developing treatments for 
their corresponding dysfunctions, including blindness, 
deafness and Parkinson’s disease.

Applying the analogous assertion to mood—that under-
standing how the brain supports mood is crucial for 
developing more effective treatments for mood disor-
ders, such as depression—is more controversial. For brain 
researchers unfamiliar with the controversy, it can be befud-
dling. You might hear, “Mental disorders are psychological, 
not biological,” and wonder, what does that mean, exactly? 
Experts have diverse opinions on the matter, with paper 
titles ranging from “Brain disorders? Not really,” to “Brain 
disorders? Precisely.”

Even though a remarkable 21 percent of adults in the 
United States will experience a mood disorder at some point 
in their lives, we do not fully understand what causes them, 
and existing treatments do not work for everyone. How can 
we best move toward an impactful understanding of mood 



and mood disorders, with the longer-term goal of 
helping these people? What, if anything, makes 
mood fundamentally different from, say, mem-
ory? The answer turns out to be complex and 
nuanced—here, I hope to unpack it. I also ask 
brain and mind researchers with diverse per-
spectives to chime in.

A
mong contemporary brain and mind 
researchers, I have yet to find any whose 
position is driven by the notion that 

some force in the universe beyond the brain, like 
a nonmaterial soul, gives rise to mood. Rather, 
the researchers generally agree that our brains 
mediate all mental function. If everyone agrees 
that both memory and mood disorders follow 
from things that happen in the brain, why would 
the former but not the latter qualify as “brain dis-
orders”?

For many researchers, the debate centers on 
the level of focus: Does the brain or the mind 
cause fluctuations in mood? By analogy, con-
sider Huntington’s disease, a neurodegenerative 
disorder caused by a mutation in a single gene. 
We regard Huntington’s as a genetically inherited 
brain disorder, not a subatomic particle disorder. 
The genetic mutation is, in fact, caused by a rear-
rangement of subatomic particles. But that’s not 
a helpful way to think about the causes of Hun-
tington’s, insofar as our goal is to treat and cure 
it; it’s simply the wrong level. Likewise, some 
researchers argue that the brain is not a useful 
level to think about the causes of mood and mood 
disorders insofar as we want to understand and 
treat them.

To elaborate a bit more, consider the phrase 
“insomnia causes fatigue.” No one disputes it. 
But what do we mean by it? There’s not a physi-
cal thing in the world, insomnia, that acts directly 
on another physical thing, fatigue. Rather, we 
mean that a lack of sleep causes the brain state 
that leads to the mind state of fatigue; in this case, 
insomnia and fatigue are not physical things but 
abstractions. If we want to help someone with 
insomnia, the most obvious way to intervene is 
not to determine the configuration of that per-
son’s ion channels or which of their brain areas 
are underactive, but rather to help them figure 
out how to get some sleep. By extension, some 
researchers propose that understanding mood 
at the psychological level, such as how a person 
experiences rewards, punishments and surprises 
relative to their expectations and beliefs, will 
have the greatest impact. Likewise, they argue 
that the most effective treatments will also be 
deployed at that level, in the form of behav-
ioral interventions, such as cognitive behavioral 
therapy,  mindfulness and other forms of psycho-
therapy. This is what researchers are referring 
to when they describe depression as psychologi-
cal, not biological. By this logic, mood is different 
from at least some types of memory impair-
ment, because behavioral interventions, such as 
memory training, cannot halt the progression of 
Alzheimer’s disease.

An extension of this idea emphasizes the criti-
cal role that our environment plays in our mental 
health. We know that trauma and stress can trig-
ger mood and other types of mental disorders, 
and that poverty and depression have a bidirec-
tional, causal relationship. To that end, some 
argue that the most effective way to improve 
mental health will be through the social and envi-
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ronmental interventions that we already know 
work. Likewise, they argue that research into 
environmental causes and interventions is as 
important, perhaps even more important, than 
brain research. You might be surprised by some 
proponents of this position, including the neuro-
scientists Peter Sterling and Michael Platt and the 
former director of the National Institute of Men-
tal Health, Thomas Insel.

On the other end of the spectrum are those 
who argue that all mood disorders are brain 
disorders. Researchers who adopt this position 
acknowledge that, though environmental fac-
tors play a role, the same is true for people with 
memory impairment or even diabetes; in this 
view, memory is conceptually no different from 
mood. Advocates concede that, yes, of course, we 
should research the psychological and social fac-
tors that exacerbate these conditions, as we do 
for memory and diabetes research. But the bulk 
of our research efforts and dollars should focus 
on the biological phenomenon that mediates dis-
ease—in the case of diabetes, the pancreas and 
insulin; in the case of memory and mood disor-
ders, the brain.

Some advocates of this position argue that 
because psychological variables are not phys-
ical—as in the insomnia “causes” fatigue 
example—it may be exceedingly difficult or 
impossible to establish cause and effect with-
out investigating their physical correlates in the 
brain. Finally, advocates of this position point to 
evidence that brain- and body-based interven-
tions, including antidepressants and exercise, as 
well as noninvasive and deep brain stimulation, 
work for at least some people with mood disor-
ders. Given how little we know about mood in the 

brain, it only makes sense to do more research on 
mood in the brain to determine if we can improve 
upon the brain-based therapies that already exist.

Many psychiatrists adopt a more nuanced 
position, in which the best level to explain the 
causes of mood and to target interventions for 
mood disorders depends on many factors, which 
can vary from person to person. For mood dis-
orders, both medicine and behavioral therapies, 
most notably cognitive behavioral therapy, can be 
effective. By contrast, behavioral interventions 
are not effective for memory disorders to the 
same degree. And the most effective treatment 
strategy will differ for different people. Many who 
adopt this position advocate for more research at 
both the biological and psychological levels, and 
the interaction between the two, emphasizing the 
need to figure out how to predict the treatments 
that will work best for specific people.

A final, more up-and-coming position draws 
from notions in physics, emphasizing the need 
to acknowledge that mood is an emergent prop-
erty of a complex system. Proponents of this 
idea point to the innumerable feedback loops 
within and among the brain, the mind and the 
environment, and their parallels to other com-
plex dynamical systems, such as the weather and 
ecosystems. They argue that because complex 
systems cannot be understood by deconstructing 
them into their parts, mood must be under-
stood holistically and simultaneously across 
levels, applying what some call a biopsychoso-
cial approach. Here, the gist is that interactions 
between the brain, mind and environment must 
be investigated simultaneously to understand 
mood and treat mood disorders. In complex sys-
tems with emergent properties, the properties of 
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higher levels cannot be inferred from lower ones. 
Consequently, if mood is an emergent property 
of the brain, it cannot be understood by studying 
the brain alone. Similar ideas exist for memory, 
though they are less pervasive.

To better understand the different ways brain 
and mind researchers are thinking about this 
topic, I asked them: 
 

What do you see as the most effective 

path forward for mood research? 

How does it compare with the path 

forward for memory? 

I was struck by the diversity of these view-
points, all rational but also quite different. All 
five of the perspectives I’ve just described (setting 
aside the sixth, a nonmaterial soul) are reflected 
in these responses.
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What do  
researchers think?

AWA I S  A F TA B ,  C A S E  W E S T E R N  R E S E R V E  U N I V E R S I T Y

Whether mood disorders (and mental disorders 
generally) are “brain disorders” is an interesting 
philosophical question. Unsurprisingly, the answer 
depends on how we understand the notion of a brain 
disorder. It is important to recognize that this ques-
tion is motivated by daunting epistemic challenges 

in brain-behavior research. Neuroscientists have been fortunate that clas-
sic memory disorders have turned out to be cases of cellular neurology gone 
awry, with downstream effects on brain circuits and cognitive domains. Mood 
disorders, in contrast, appear largely to involve brain-body-environment 
interactions locked into dysfunctional patterns. Historically, neuroscience 
has lacked the tools to meaningfully articulate such higher-order dynamic 
interactions, and its current abilities to do so are fairly rudimentary; psycho-
logical concepts describe these interactions, albeit in a manner that is often 
idiosyncratic and socially constructed. Concepts such as narcissism, shame, 
projective identification—so familiar to psychodynamic clinicians—resist 
easy articulation in neurological terms. Maybe one day neuroscience will 
develop the language to adequately describe and explain these higher-order 
phenomena, but it is not there yet. Neuroscience requires periodic reminders 
that its current methods are too crude, that it should not be so arrogant as to 
think it can make psychology and the social sciences redundant. Mood dis-
orders are multi-level phenomena, not categorizable simply as problems of 
“mental software,” nor as problems of “neurological hardware.” Their scien-
tific understanding requires the “piecemeal integration” of multiple scientific 
disciplines and a great deal of epistemic humility.
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A U S T I N  C O L E Y,  U N I V E R S I T Y  O F  C A L I F O R N I A ,  

L O S  A N G E L E S 

Investigating the nuances of mental health disor-
ders, particularly in mood disorder research, holds 
immense promise for both basic science and clini-
cal applications. Moving away from rigid diagnostic 
categories toward a spectrum-based approach can 

revolutionize our understanding and treatment of these conditions. This shift 
allows for a more precise diagnosis and personalized treatment plan tailored 
to individual needs, recognizing that not everyone responds uniformly to the 
same interventions. By closely tracking behavioral patterns alongside neural 
activity over time, we can uncover subtle yet significant changes at a granular 
level. This is the scientific basis of my research program. This comprehensive 
approach will enable us to fine-tune treatments and potentially offer preemp-
tive measures for people predisposed to mood disorders. Also, examining the 
dynamic interaction between mood fluctuations and cognitive function, such 
as memory formation, is essential. Those with major depressive disorder com-
monly experience cognitive decline, making it imperative to elucidate the 
relationship between depressed mood and memory consolidation. By doing so, 
we can gain valuable insights into the underlying mechanisms driving these 
conditions, thereby leading to more effective interventions and improved 
patient outcomes.

E I K O  F R I E D ,  L E I D E N  U N I V E R S I T Y

 For me, inroads for mood research in the mental 
health sciences will come from better understand-
ing the systems these states play a role in. A person’s 
mood states—happy, angry, anxious—are experi-
ences that serve as both causes and effects. These 
states influence each other, but they also influence 

a person’s thoughts and behaviors, and the environment. What I experience 
when I receive a bad grade in school or kiss someone influences—and is influ-
enced by—my mood states. The systems theory of mental disorders posits 
that these networks of mood states and related features can form healthy 
attractor states: Reciprocal interactions and feedback loops keep many of us 
in a healthy state. An episode of major depression, then, is an alternative sta-
ble state in this system. If we take this perspective seriously, the next steps are 
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to map out these systems, by combining dynamic data, collected via smart-
phones, for example, with appropriate statistical models to study how these 
systems differ across people, how stable they are over time, and if systems 
change during transitions. We carry out some of this work in the WARN-D lab.

S T E V E N  H Y M A N ,  B R O A D  I N S T I T U T E

The most certain path to better treatments for 
mood disorders depends on insight into their mech-
anisms—and thus into brain biology. Whether the 
onset of a depressive episode follows an adverse 
experience such as loss of a job or seems to come 
from nowhere, it is grounded in neural mecha-

nisms, as are the ultimate treatment targets, regardless of how treatment is 
delivered—via psychotherapy, medicine or electrical stimulation. Such asser-
tions do not represent reckless reductionism. Brains support the fitness of all 
free-living animals, including ourselves, because they are remarkably pow-
erful integrators. To select actions and regulate our physiology in response 
to threats, rewards or complex social interactions, the brain must synthe-
size information that comes from each person’s DNA, prior developmental 
events and their bodies, with current sensory inputs that refine its predic-
tions of what is happening in the present and what will happen in the future. 
To discover better treatment, we must understand how such mechanisms go 
awry. Some who accept the brain as the substrate of thought, emotion and 
behavior—nature’s lesion “experiments” are quite convincing—but none-
theless devalue the brain’s importance, often hold an erroneous model 
that analogizes the brain to a digital computer that could run any software. 
They construe the neural hardware as a dumb machine programmed by the 
important stuff, thought and experience. But the brain is nothing like a digital 
computer. There is no software independent of biology. Even as neural cir-
cuits are computing the current moment and predicting the next, the brain’s 
structure, including molecules, dendrites and synapses, is changed forever. It 
is the biology and plasticity of the brain itself that matter for all experience 
and action and all psychiatric illness. There is nothing left over.
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J O S E P H  L E D O U X ,  N E W  Y O R K  U N I V E R S I T Y 

The ability of mental health professionals to deliver 
treatments that effectively relieve mental anguish 
pales next to the success that other areas of medi-
cine have achieved. I think part of the problem is that 
the medical model may not be as applicable to men-
tal disorders, or at least not to the mental part of such 

disorders. Medicinal treatments are especially useful in altering behavioral and 
physiological symptoms. But mental anguish is subjective, conscious suffering. 
That does not mean that conscious experience is not physical. It just means that 
it involves higher-order circuits that operate independently of those that control 
behavioral and physiological responses. It is not surprising that medications that 
alter behavioral and physiological responses in animals do not do much to relieve 
mental anguish in humans. Possibly medications developed in human studies 
would do a better job. But only if the researchers accept that changing a person’s 
behavior or physiology is not going to do the trick. The target has to be subjective 
experience itself. The core problem of mental anguish might be best treated with 
psychosocial approaches. Medications can also have a role in helping to ease pro-
cess, but not as a cure or primary treatment.

L I S A  M O N T E G G I A ,  VA N D E R B I LT  U N I V E R S I T Y  

My lab studies synaptic plasticity processes in 
memory, as well as in the treatment of mood disor-
ders. I think of memory and mood as manifestations 
of brain function that rely on processes from neurons 
and their synaptic contents. These two distinct pro-
cesses may be embedded within the same neuronal 

synaptic network yet have distinct features. Forming memories requires encod-
ing precise bits of information in our synaptic networks. Precision, long-term 
storage and retrievability are essential features of memory. Mood, in contrast, 
is a global regulator of synaptic networks that does not necessarily influence 
the specific information encoded but rather determines how and when it is 
encoded and retrieved, and what actions we choose to take in response to this 
information. In essence, memory is the information, whereas mood is how we 
use and react to this information. Therefore, these two processes may arise 
from the same synaptic networks in the brain but rely on their distinct abilities 
to process information.
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R U S S E L L  P O L D R A C K ,  S TA N F O R D  U N I V E R S I T Y 

Memory and mood are clearly similar in the sense 
that they are defined by our subjective experience and 
can have powerful effects on how we think, feel and 
behave. But I see at least three ways in which they dif-
fer, which are directly relevant to how we can most 
successfully study them. First, memory is (at least 

often) tethered to the objective world, whereas mood is wholly subjective; 
whether I went to Astroworld as a child is a matter of fact, but whether I am 
happy today is simply a matter of my subjective experience of happiness. This 
external verifiability of memory has made it much more tractable to study, and 
particularly to develop models in nonhuman animals. Second, memory poses 
a much clearer set of computational problems, such as recognition (differenti-
ating previously experienced stimuli from similar but novel stimuli) and recall 
(retrieving details about previous experiences). This has led to the development 
of successful computational models of memory that have made it possible to 
computationally characterize neural circuits for memory. The computational 
problem that mood solves, and whether it even makes sense to analyze mood 
in computational terms, are much less clear. Finally, with memory, we may 
have simply gotten lucky with regard to functional anatomy. The fact that lim-
ited lesions to a small set of brain structures in the medial temporal lobe can 
result in punctate memory disorders has provided a platform for subsequent 
analysis and modeling of those neural circuits. There does not appear to be 
any similar high-value target for mood. Instead, it seems that mood disorders 
can result from lesions across a widespread set of brain regions. The “localize 
and decompose” strategy may have worked well for memory, but mood may 
require a different strategy, such as one grounded in complex systems theory.

L A U R E N  R O S S ,  U N I V E R S I T Y  O F  C A L I F O R N I A ,  I R V I N E 

Memory and mood both have genuine causes within 
and outside of the brain, but they also differ in import-
ant ways. In particular, it is worth considering whether 
mood states have more psychological causes and charac-
terizations (in contrast to biological and neurobiological 
causes), especially when compared with memory. One 

main reason for this is evidence that moods can be successfully and strongly influ-
enced by “self-interventions,” such as when people alter their own thoughts and 
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emotions as a way of changing their behavior. Cognitive behavior therapy, talk 
therapy, and mindfulness and meditation all fall into this category. Though mem-
ory can also be influenced by psychological factors, it seems somewhat less subject 
to self-intervention. And memory has other features that make it easier to connect 
to neurobiological-level causes—memory is more straightforwardly conceived of 
as a coherent, functional system, whereas “mood” is often an umbrella term for 
disparate states, such as depression, anxiety and fear, many of which gain scientific 
attention as dysfunction or disease, rather than functional systems. Further explor-
ing these similarities and differences is important for supporting advances in both.

R O B B  R U T L E D G E ,  YA L E  U N I V E R S I T Y

Our understanding of mood at a computational and 
neurobiological level lags behind our understanding of 
memory. I think this is largely because of mood’s sub-
jective nature. We can ask an animal which picture they 
have seen before, but we can’t easily ask an animal if 
they are happy. Can we just use neural and physiologi-

cal measurements instead? Not quite. A person can be wrong about whether they 
have seen a picture before, but they can’t really be wrong about whether they are 
happy, no matter what our measurements say. That doesn’t mean we can’t ask 
people what they are feeling and use mathematical models to predict what they 
will say. This approach has shown that happiness depends on whether you are 
doing better than expected recently, and that sometimes learning matters more 
for happiness than reward (you might have a hobby where this finding applies). It 
turns out that happiness can sometimes go up and down in much the same way in 
people with and without major depression, a disorder in which diagnosis depends 
on subjective reports. There’s no reason we can’t better understand mood at both 
a psychological and biological level, and I’m optimistic that this improved under-
standing will lead to some of the new treatments we so badly need.

 

S H A N  S I D D I Q I ,   B R I G H A M  A N D  W O M E N ’ S  H O S P I TA L

As a neuropsychiatrist, I can explain some causes 
of my patient’s memory disorder, and I can usually 
offer effective treatments for their mood disorder—
but the converse is not satisfyingly true. How will 
we fill those gaps? First, we might need to recog-
nize a fallacious dichotomy: either the disorders are 
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fundamentally similar, meaning both are brain disorders, or fundamentally 
different, meaning one is of the brain and the other of the mind. Both models 
are useful, but both are wrong (like all models). This ancient question plagued 
philosophers from Buddha to Descartes. But it was more relevant when epi-
lepsy was attributed to evil spirits, all lung disorders were called “pleuritis,” 
and the pineal gland was considered the seat of the soul. Medicine has since 
moved on, pragmatically adopting empiricism over Descartes’ rationalism. It 
would be absurd to debate whether COVID-19 and lung cancer are fundamen-
tally similar or different. Similarities and differences are both obvious. Perhaps 
more importantly, we have vastly different treatment approaches for COVID-19 
and lung cancer, but also commonalities—we can reduce mortality globally by 
vaccinating against infection, raising nicotine taxes and improving health-care 
access. So are mood disorders caused by social factors or biological factors? 
The answer is “both.” But the question is wrong. I won’t live to see the full chain 
of causality for either mood or memory disorders. For now, we can make prog-
ress by mapping which parts of that chain can be targeted in which situations 
to reduce real suffering in real people.

E R I C  T U R K H E I M E R ,  U N I V E R S I T Y  O F  V I R G I N I A

Enthusiasts and skeptics of a biological explana-
tion of human behavioral traits face twin challenges. 
For us skeptics, the trick is to avoid ghost-in-the-ma-
chine dualism. No soul, no free will, no mind, unless 
it is unambiguously rooted in physical, evolved 
organic reality. Enthusiasts must avoid tautologi-

cal materialism. I get it: all thinking, wanting and believing is done with the 
brain, and if all you have to say is that therefore aphasia and religious devo-
tion are all equally “in your brain,” fine, but it gets you nowhere. All assertions 
that a complex behavior is “biological” should be paired with an example of 
something that is not. In 1998, I imagined two silent people: a person who had 
a stroke in the left frontal lobe that resulted in a deep aphasia, and a monk 
who had taken a vow of silence as a matter of religious devotion. No dualism: 
Both silences are in their brains, somehow. Why do they seem so different? 
The answer is mostly about entities and the language we use to define and 
describe them. Aphasia, as a category, corresponds to a class of neurological 
events resulting from stroke. There is no class of neurological events that cor-
responds to devotional silence.
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We found a major flaw in a scientific 

reagent used in thousands  

of neuroscience experiments— 

and we’re trying to fix it.

B Y  M O N A  A L Q A Z Z A Z  A N D  A L E D  E D W A R D S 

Women are systematically  

under-cited in neuroscience.  

New tools can change that.

B Y  A N N E  C H U R C H L A N D  A N D 

F E L I C I A  D AVAT O L H A G H

At the credit crossroads: Modern 

neuroscience needs a cultural shift 

to adopt new authorship practices
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We found a major flaw  
in a scientific reagent used  
in thousands of neuroscience 
experiments—and we’re  
trying to fix it.

I L L U S T R AT I O N  B Y  D A N I E L  L I É VA N O
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As part of that ambition,  

we launched a public-private  

partnership to systematically evaluate 

antibodies used to study neurological 

disease, and we plan to make all  

the data freely available.

B Y  M O N A  A L Q A Z Z A Z ,  C O M M U N I T Y 

E N G A G E M E N T  S C I E N T I F I C  F E L L O W 

A N D  A L L I A N C E  M A N A G E R , 

Y C H A R O S  A N D  T H E  S T R U C T U R A L 

G E N O M I C S  C O N S O R T I U M ;  A N D 

A L E D  E D W A R D S ,  P R O F E S S O R 

O F  M O L E C U L A R  G E N E T I C S 

A N D  M E D I C A L  B I O P H Y S I C S , 

U N I V E R S I T Y  O F  T O R O N T O

T
he most common genetic cause of frontotemporal 
dementia is a mutation in the gene C9ORF72, first 
pinpointed in 2011. This amazing discovery was fol-

lowed by years of confusion about the cell biology of the 
protein C9ORF72 encodes. Some papers reported that it 
was localized to the nucleus, others to a range of different 
organelles, still others to the cytoplasm. And without a basic 
understanding of where the protein acts, there was no way 
to move toward developing a treatment for frontotemporal 
dementia.

In 2019, working with a group of colleagues, we decided 
to look into the problem, focusing first on characterizing the 
antibody reagents other scientists had used to localize the 
protein. What we found was distressing. Using cells lacking 
C9ORF72 as controls, we discovered that not a single anti-
body reagent used in any of the published studies actually 
worked as advertised—they all bound to other proteins in 
addition to the target. In short, all the studies published 
using these C9ORF72 antibodies were potentially flawed. We 
also tested other commercial antibodies that had not, to our 
knowledge, been used in published research, and we found 
a few that were highly selective. These antibodies revealed 
that C9ORF72 is localized to the peri-lysosomal region and 



mostly expressed in microglial cells, discoveries 
that have since been replicated.

The C9ORF72 example illustrates a wide-
spread problem. Antibodies are one of the most 
commonly employed reagents in molecular 
research, used to identify single proteins in a 
cell’s complex mixture. But scientists have known 
for decades that they can be inaccurate, binding 
to more than just the protein of interest. Publica-
tions that unknowingly use inaccurate antibodies 
can compound the issue, making it difficult to 
reproduce scientific results and raising questions 
about the validity of some preclinical 
drug studies.

Despite the seriousness 
of the problem, the field 
lacks a systematic way to 
characterize antibody 
accuracy. Quantify-
ing how precisely an 
antibody highlights its 
target—its selectivity 
and specificity—is expen-
sive and time consuming. 
The gold-standard approach is 
to compare cells expressing a tar-
get protein and those genetically modified 
to lack the target protein. Though many manufac-
turers do some knockout testing, the process is 
too expensive to apply to all antibody products. 
Most labs lack the requisite technologies, time 
or funding to rigorously characterize antibodies. 
As a result, most homemade or commercial anti-
bodies are not subject to strict testing, a serious 
structural failure in the antibody ecosystem.

To address these structural issues, a team of us 

in academia and industry has launched an effort 
to systematically characterize widely used anti-
bodies, employing knockout cells and tissues as 
controls whenever possible. Known as YCharOS, 
this public-private partnership has initially 
focused on antibodies used to study neurolog-
ical conditions, including Alzheimer’s disease, 
amyotrophic lateral sclerosis (ALS), autism, fron-
totemporal dementia and Parkinson’s disease. We 
plan to eventually characterize high-performing 
antibodies for all human proteins.

In a pilot project, we tested 614 antibodies to 
each of 65 proteins linked to ALS, Alz-

heimer’s disease and Parkinson’s 
disease, using knockout cell 

lines we generated or col-
lected from academic and 

commercial partners. 
The results were sober-
ing. Many commercial 
antibodies did not per-
form as expected—60 

percent of the antibod-
ies were not specific to 

their intended target. Given 
this figure, we predict that as 

much as 20 percent of the figures in 
publications using these antibodies are in 

question. On the positive side, we estimate that 
well-performing antibodies are already available 
for more than 50 percent of protein targets. With 
this knowledge, antibody makers can focus their 
development efforts on the other 50 percent.

In just three years, YCharOS has already pro-
duced valuable information for the neuroscience 
community. But we could make faster progress 
with greater community contribution—partic-

“The open-science  

nature of the project  

was essential in making it 

work—companies and others 

are willing to participate 

because the data  

are open.”
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ularly with community-supported sharing and 
generation of knockout cell lines.

A
ll the data we generate will be publicly 
available after internal scientific review. 
Indeed, the open-science nature of the 

project was essential in making it work—compa-
nies and others are willing to participate because 
the data are open. Companies in the partnership 
have donated more than 800 antibodies for our 
pilot project, for example.

To date, YCharOS has published 78 antibody 
characterization reports for targets associated 
with ALS, Alzheimer’s disease, autism, fron-
totemporal dementia and Parkinson’s disease. 
These reports are available in the public domain 
at Zenodo, a general-purpose open-access data 
repository operated by the European Organiza-
tion for Nuclear Research, CERN. To increase 
awareness, many of these reports have been 
shared via F1000 or more traditional publications, 
which enables them to be indexed on PubMed. 
Our protocols for immunoblotting, immunoflu-
orescence and immunoprecipitation, developed 
in consultation with an expert group of academ-
ics and industry representatives, are also now 
publicly available. The protocol for immunohis-
tochemistry is in development.

The reaction from commercial providers has 
been outstanding. When antibodies perform 
inadequately in the mutually agreed-upon stan-
dard operating procedures, their makers either 
remove the antibodies from the market (18 
percent of antibodies tested) or alter their rec-
ommended usage (37 percent of the antibodies 

tested). We are also seeing an increase in the use 
of well-performing antibodies in the literature.

Manufacturers have also adjusted their 
research and development pipelines to meet 
the gaps that YCharOS has identified. For exam-
ple, when it was clear that no existing antibodies 
were available for the proteins PRKN and SMOC1, 
two companies produced new well-performing 
antibodies. Similarly, based on feedback from 
YCharOS, many manufacturers are gearing up 
their pipelines to produce new recombinant 
antibodies to HTT, the protein implicated in Hun-
tington’s disease.

Looking forward, the field needs to address the 
availability of knockout cells, a key bottleneck. 
We could assess more antibodies if individual 
scientists shared their lines with YCharOS and if 
funders supported concerted community efforts 
to generate knockout lines. Scientists interested 
in a specific target could also include a budget 
line item to support the characterization of all 
commercial renewable antibodies for that target 
in each of many applications—we estimate this 
would cost roughly $50,000 per target. All these 
efforts would have a lasting impact because the 
characterization is focused on renewable and 
recombinant antibodies.

We have a clear scientific road map to iden-
tifying well-performing antibodies for all human 
proteins and an organizational framework to 
carry out this task. If the community works 
together, we will get there faster.
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Women are systematically 
under-cited in neuroscience. 
New tools can change that.

P H O T O G R A P H  B Y  R I C H A R D  D R U R Y
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An omitted citation in a high-profile 

paper led us to examine our own 

practices and to help others adopt tools 

that promote citation diversity.

B Y  A N N E  C H U R C H L A N D , 

P R O F E S S O R  O F  N E U R O B I O L O G Y, 

U N I V E R S I T Y  O F  C A L I F O R N I A , 

L O S  A N G E L E S ;  A N D  F E L I C I A 

D AVAT O L H A G H ,  P O S T D O C T O R A L 

R E S E A R C H E R ,  U N I V E R S I T Y  O F 

C A L I F O R N I A ,  L O S  A N G E L E S

O
ne day last year, we opened a journal web page 
and were excited to find a long-awaited paper 
about a particular brain area’s role in a cognitive 

computation. The authors, based on talks they had given at 
conferences, had a different take on this brain area com-
pared with another high-profile paper, and we were curious 
to learn more.

But our hopes were soon dashed: The new paper didn’t 
cite the previous one, published only a year before and with 
female first and last authors. The authors of both papers 
later discussed the omitted citation on Twitter/X, but the 
issue remained unresolved. It didn’t seem that the authors 
of the later paper had omitted mention of the earlier one on 
purpose, so why was our female colleagues’ highly relevant 
work left out?

Research suggests the answer may lie with systematic 
citation bias—a trend that persists even as the number of 
women in academia, including in neuroscience, continues 
to grow. The proportion of papers authored by women (first 
or last author) across five broad-scope neuroscience jour-
nals increased from 36 percent in 1995 to 50 percent in 2018. 
Yet first and last male authors are increasingly over-cited, 
according to a study published in Nature Neuroscience 
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in 2020. And the gap between observed and 
expected gender proportions in neuroscience 
citations is widening at a rate of 0.41 percentage 
points per year, even after accounting for year of 
publication, number of authors, article type and 
first/last author seniority.

The imbalance is largely driven by gendered 
citation practices—male authors are more likely to 
over-cite male authors and less likely to cite wom-
en-led work. A subsequent analysis that focused 
on reference lists within cognitive neuroscience 
found a similar pattern of bias, as did a study exam-
ining the intersection of race, ethnicity and gender.

It is urgent that we address this issue, given 
that citation metrics are often used as a measure 
of a researcher’s impact and productivity in their 
field and can influence their hiring, promotion 
and invited-speaker opportunities. Fortunately, 
new tools—such as cleanBib, anneslist and oth-
ers—exist to help researchers counter citation bias 
across genders and other demographic divides.

T
hese tools have some limitations, such as 
a lower accuracy for transgender, nonbi-
nary or intersex authors, but they are of 

great value to our field. Actively performing lit-
erature searches to improve citation balance can 
improve a manuscript’s scholarliness, as it may 
lead authors to identify work that was overlooked 
initially.

CleanBib analyzes any reference list and 
quantifies the proportion of men and women 
authors, as well as the proportion of authors from 
other underrepresented groups, such as Black 
and Latino neuroscientists. It then generates a 
citation diversity statement that breaks the bib-
liography down by gender and ethnicity and can 
be placed before a paper’s references section. A 
2021 analysis found that cleanBib has already had 
an impact. Papers from scientists that have used 
the tool cite a larger proportion of women than 
the average rates in five top neuroscience jour-

 “It is urgent that we address this issue,  

given that citation metrics are often used  

as a measure of a researcher’s impact  

and productivity in their field and  

can influence their hiring, promotion and 

invited-speaker opportunities.”
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nals: Nature Neuroscience, Neuron, Brain, Journal 
of Neuroscience and Neuroimage.

Additional tools—such as anneslist, a list of 
women scientists in different subfields of neu-
roscience; Cite Black Authors, a database of 
research by Black academics; and Diversify 
STEM Conferences, a list of researchers from 
underrepresented groups across fields—can also 
help authors identify relevant researchers and 
improve citation balance.

Asking scientists to include a citation diversity 
statement is one way to promote an awareness of 
citation bias and to encourage them to use these 
tools and acknowledge the scientific contribu-
tions of women and people of color. Cell Press 
was among the first publishers to invite authors 
to create an inclusion and diversity statement, 
and it found that more than 40 percent of authors 
opted to do so. This initiative was paused as of 
late 2023, but we hope it eventually continues.

Including citation diversity statements in 
preprints would provide even more opportu-
nity for authors to receive feedback on their 
bibliographies. Ideally, these practices could be 
implemented along the lines of data-sharing and 
open-science policies. Researchers who, like us, 
have used cleanBib and other tools could share 
their experience and expertise.

Including a diversity statement in research 
publications is an actionable goal for every-
one, from graduate students writing their first 
paper to principal investigators reviewing manu-
scripts from their lab. More broadly, investigators 
reviewing papers for journals should pay atten-
tion to whose work is cited and offer suggestions 

if work is excluded. We all must play a role in 
determining whose work is acknowledged and 
valued while moving the field toward reference 
lists that accurately represent the increasing 
diversity of the neuroscience field.

We were among the first researchers to add 
diversity statements to papers, and recently we 
ran a hands-on workshop at the University of 
California, Los Angeles on citation bias, demon-
strating how to use cleanBib to quantify bias in 
gender, race and ethnicity in reference lists and 
exploring its strengths and limitations. Efforts 
like this are part of our longstanding commit-
ment to leveling the playing field in science and 
making it more welcoming to newcomers of all 
kinds. Looking back on the female-female paper 
that was omitted in the recent manuscript, we 
can’t help but wonder whether these tools could 
have avoided the unintentional oversight.
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At the credit crossroads: 
Modern neuroscience needs 
a cultural shift to adopt new 
authorship practices

I L L U S T R AT I O N  B Y  VA H R A M  M U R A D YA N
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Old heuristics to acknowledge 

contributors—calling out first and  

last authors, with everyone else  

in between—don’t work well for large 

collaborative and interdisciplinary 

projects, yet they remain the default.

B Y  M E G A N  P E T E R S ,  A S S O C I AT E 

P R O F E S S O R  O F  C O G N I T I V E 

S C I E N C E S ,  U N I V E R S I T Y  

O F  C A L I F O R N I A ,  I R V I N E

W
hen it comes to how neuroscientists assign credit 
in academic writing, the field is at a crossroads. 
Neuroscience has roots in biology and psychol-

ogy, which have traditionally favored smaller collaborations, 
and it relies on simple heuristics, such as authorship order, 
to assign credit: The first author did all the work, the last 
author supervised, and a few folks in between played various 
(smaller) supporting roles. But as neuroscience broadens to 
embrace cognitive and computational neuroscience, artifi-
cial intelligence, big data and more, the field is venturing into 
a Wild West of large consortium science.

With larger, collaborative and increasingly interdisci-
plinary efforts, the question of who really gets credit for a 
given scientific output becomes much more complex—and 
established cultural norms no longer work. Research contri-
butions in neuroscience and psychology are more numerous, 
more varied and more specialized than ever, and the increas-
ing adoption of open-science practices calls for even more 
nuanced credit assignment. How can we push forward into 
this brave new “big science” world while properly recogniz-
ing these contributions, both practically and socially?

Researchers have developed several potential solutions 
to this problem, including new ways to assign both the over-
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all amount of credit and the type of credit each 
contributor should receive. I’ve suggested a few 
ideas below. But so far, these clever guidelines 
have failed to replace the first-author, last-au-
thor convention. Why? Personally, I think a 
true solution will require more than developing 
ontologically satisfying systems for credit assign-
ment and integrating them into our publishing 
systems. Instead, we must find better ways to 
integrate these systems with established cultural 
norms and—importantly—our very human need 
for simple, interpretable heuristics.

T
o see why, let’s lay out the scope of the 
problem.

First, what is the appropriate amount 
of credit to assign to a contributor? Most scientists 
recognize that assigning a monolithic amount 
of credit based on the first-author, last-author 
convention often fails to reflect the volume or 
criticality of work done by others on the list. 
We’ve tried a few fixes in neuroscience, including 
the increasing prevalence of co-first and co-last 
author arrangements. But I think we all know in 
our hearts that this doesn’t address the core chal-
lenge: People still fight over who is really first on 
co-first-author lists. (Some citation software still 
lists “Smith et al., 2005” in American Psychologi-
cal Association [APA]-style in-text citations, even 
if the full citation is Smith*, Jones*, Lee, & Lau, 
with the asterisks denoting equal contribution.)

And how do we get the credits right for large, 
multi-lab collaborations, in which there are sev-
eral trainees sharing the work equally and several 
equal co-principal investigators?

We could take inspiration from other fields, 
including particle physics and public health, 
that have applied a remedy at one extreme end 
of a spectrum: treating an “author” as essentially 
everybody in a consortium who ever touched 
some large piece of equipment or who contrib-
uted to a particular dataset. As a result, some 
papers have hundreds or even thousands of 
authors (see, for example the Large Hadron Col-
lider paper with 5,154 authors, or the COVID-19 
vaccination paper with 15,025 co-authors), or cir-
cumvent first-authorship stardom by putting the 
name of the consortium as first in the author list.

Some neuroscience consortia have adopted 
similar approaches, such as the International 
Brain Laboratory, which offers complex, com-
munity-developed rules for authorship. But some 
major concerns prevent the blanket adoption of 
these practices, especially in groups of tens rather 
than hundreds or thousands of authors. Chiefly, 
large-list approaches can backfire in some fields, 
research shows: Rather than spreading the wealth 
as intended, they may obscure credit, meaning no 
one gets the recognition they deserve.

In 2022, for example, Clarivate, a large player 
in data analytics that ranks “highly cited research-
ers,” began excluding papers with more than 30 
authors from its calculation. Because the median 
number of authors per paper varies highly from 
field to field, this issue disproportionately affects 
fields with larger author lists, including neurosci-
ence: As of 2018, roughly 80 percent of papers in 
psychiatry and psychology—and 91 percent and 
74 percent, respectively, in computer science and 
physics—had one to five authors, compared with 
about 50 percent of papers in biology and neuro-
science. Because modern neuroscience is heavily 
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influenced by fields with fewer authors, we might 
find it particularly difficult to grapple with longer 
author lists.

Some have proposed new indices to augment 
existing practices by indicating “how much” a 
given author contributed, but cultural uptake 
of such metrics in our field has unfortunately 
been slow to nonexistent. A second, perhaps 
more challenging problem is how to recognize 
different kinds of contribution—collecting data, 
performing analyses, conceptualizing a project 
and acquiring funding—that are qualitatively dif-
ferent from one another.

One solution is the CRediT (Contributor Roles 
Taxonomy) system, introduced in 2015 as an 
attempt to provide transparency and account-
ability in authorship type attribution. This is the 
system that asks, when you submit to a journal, to 
tick up to 14 boxes saying who did what: concep-
tualization, methodology, software, validation, 
funding acquisition, writing and so on, with the 
results typically displayed in an “Author contri-
butions” section of the manuscript. Championed 
as a way to diminish the use of authorship order 
in assigning credit, the CRediT system has been 
adopted by more than 40 publishers and jour-
nal families, including Public Library of Science 

(PLOS), Cell Press and Elsevier, and was recently 
adopted as an American National Standards 
Institute/National Information Standards Organi-
zation standard.

Unfortunately, though, I don’t think CRediT 
works as well in practice as we would hope. 
First, CRediT’s limited scope and narrow focus 
on predetermined traditional authorship roles 
may mischaracterize the diverse and ever-evolv-
ing range of contributions in larger, consortium 
style research—especially as we move to more 
complex (and laborious) data annotation and 
sharing. (For more, see Maryann Martone’s piece 
from The Transmitter’s  “Open neuroscience 
and data-sharing” essay series.) The restric-
tion of applying a CRediT-type system only to 
authors also obscures other important contribu-
tions that may not surpass a journal’s threshold 
for authorship, such as from technical staff. The 
one-size-fits-all categories also don’t always work 
well for opinion, educational materials, or per-
spective style pieces—the kinds of pieces we have 
typically written in large, multi-author groups at 
Neuromatch, for example.

“The challenge we’re facing in credit 

assignment isn’t just ontological—it’s deeply 

cultural, psychological and practical.”
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W
hat about alternatives? Many smart, 
driven meta-scientists have developed 
promising innovations beyond CRediT: 

the expanded Contributor Role Ontology; author-
ship matrices; storyboarding approaches; and the 
Contributor Attribution Model, “an ontology-based 
specification for representing information about 
contributions made to research-related artifacts.” 
But uptake of these tools—and a corresponding shift 
in how we collectively think about and use credit 
assignment in practice—has proven even more ach-
ingly slow than the meaningful adoption of CRediT 
in daily life. This is also especially important for 
trainees, whose careers might be most negatively 
impacted by attempts to adopt idealistic but cul-
turally challenging quick fixes, such as multiple 
co-first authors or “Consortium et al.” approaches.

Here’s a perhaps less obvious but, in my opin-
ion, crucial problem: As the most widely adopted 
system, CRediT formats author contributions to be 
machine readable and accessible via API, in addition 
to being included as “Author contributions” state-
ments on individual papers. This formatting makes 
CRediT-based contributions useful for meta-analy-
ses, for example, but less useful in aggregate for any 
end-user scientist like you or me. Sure, we can read 
all those author contribution statements on every 
PDF, I suppose. But it is difficult—whether we are 
trying to evaluate colleagues or applicants in hiring 
or promotion decisions or simply curious—to use 
CRediT-based data to figure out what kinds of con-
tributions a particular person has made across their 
entire career, or even just recently.

ORCID profiles can technically integrate 
CRediT information from ORCID-linked papers, 
but they don’t summarize this information in a 
useful way. (Few people check someone’s ORCID 

profile page anyway, and even the account owner 
doesn’t have easy access to their own aggregate 
metrics.) So rather than relying on these con-
tributions, it’s simply much easier for us all to 
continue characterizing our fellow scientists by 
counting their first-authorships and high-profile 
outlets on a CV or looking at their h-index on Goo-
gle Scholar, even though we all know better.

To put it plainly, the challenge we’re facing 
in credit assignment isn’t just ontological—it’s 
deeply cultural, psychological and practical. And 
so far, simply recognizing that the issue exists 
hasn’t been enough to make us change our ways.

I think our path forward is clear: We need bet-
ter methods for meaningfully integrating new 
credit assignment systems into our existing work-
flows in ways that make the information obvious, 
transparent and accessible in daily life. Heuristics 
become entrenched for a reason—we keep falling 
back on the “first author, last author” shortcut 
because it’s easy and makes sense—so let’s make 
ourselves some cheat sheets that better reflect 
our values. ORCID profile contribution badges 
across all linked papers could be a good start; a 
new category of summary statistics to accompany 
the h-index and i-index section on Google Scholar 
or cute graphical ways to display our identities as 
researchers on our CVs might also help. I’m sure 
you have other ideas, too. But no matter which 
version actually catches on, the collective goal 
should be a shift in our focus toward prioritiz-
ing the sociological utility of credit assignment, 
rather than simply capturing the data. Hopefully, 
a cultural shift will come along for the ride, and 
we’ll all be better at appropriately recognizing 
the valuable diversity of “big science” authorship 
contributions in modern neuroscience.
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neuroscience
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New technology that delivers 
much more than a simple  
DNA sequence could have  
a major impact on brain  
research, enabling researchers  
to study transcript diversity,  
imprinting and more.
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This series explores the often-fuzzy concept  
of representation and the different ways  
researchers employ the term.



What are we talking about? 
Clarifying the fuzzy concept  
of representation in  
neuroscience and beyond

I L L U S T R AT I O N  B Y  K L A U S  K R E M M E R Z
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To foster discourse, scientists need  

to account for all the different ways  

they use the term “representation.”

B Y  F R A N C I S  T.  FA L L O N , 

A S S O C I AT E  P R O F E S S O R  

O F  P H I L O S O P H Y,  S T.  J O H N ’ S 

U N I V E R S I T Y ;  T O M Á S  J .  R YA N , 

A S S O C I AT E  P R O F E S S O R  O F 

N E U R O S C I E N C E ,  T R I N I T Y  C O L L E G E 

D U B L I N ;  J O H N  W .  K R A K A U E R , 

P R O F E S S O R  O F  N E U R O L O G Y, 

J O H N S  H O P K I N S  U N I V E R S I T Y  

A N D  T H E  R P P F  G R O U P

T
he notion of representation in brain and cogni-
tive sciences is ubiquitous, vitally important, and 
yet fuzzy. This holds both within neuroscience and 

beyond, including in cognitive science, artificial intelli-
gence, linguistics, psychology and philosophy of the mind. 
What people mean when they use the term varies consid-
erably, ranging from a simple correlation between a neural 
response and a stimulus to a true offline model of the world. 
Indeed, the members of our group hold many different, 
often opposing, views on how best to define the concept 
of representation. To enable clearer usage and facilitate 
discussion, we hope as a group to develop a catalog of the 
various uses.

For many, representation is central to the very idea of 
a science of the mind. This view was already well enough 
established in 1983 for linguist Noam Chomsky to write: “It 
is fair to define cognitive psychology as the study of mental 
representations—their nature, their origins, their system-
atic structures, and their role in human action.” Consider 
also this entry from the Encyclopedia of Philosophy: “Men-
tal representations are the coin of contemporary cognitive 
psychology, which proposes to explain the etiology of sub-
jects’ behavior in terms of the possession and use of such 
representations.” A common application is within compu-



tational models of cognition, where models can 
independently draw on discrete representations, 
recombine them in a compositional manner and 
operate on them to enable planning, reasoning 
and problem-solving.

Cognitive scientists use the term represen-
tation to posit an entity that lies at the basis of 
cognition, but neuroscientists instead use it to 
indicate that behaviorally relevant information 
is detectable in single neurons, circuits and neu-
ral populations. This more casual or correlational 
usage of the term makes fewer theoretical com-
mitments, but as a result it is often 
not clear what additional work it 
does beyond referring again 
to the mere association 
itself.

These types of cor-
relations are quite easy 
to detect, and new find-
ings question whether 
all of them should be 
referred to as representa-
tions. For example, recent 
studies have found that activ-
ity across the brain, even in early 
sensory neurons or areas, correlates with 
a variety of properties, including ongoing actions, 
choices and behavioral engagement. Is the activ-
ity of these neurons causally relevant to cognitive 
function in every case—meaning, for example, 
does that neural activity actually contribute to the 
animal’s decision—or is it just epiphenomenal? 
Regardless, this recent work showing correla-
tions everywhere raises questions about whether 
simple correlation is a strong enough basis for 
representation.

Even in the realm of cognition, there have 
been attempts that seem to forego mental rep-
resentations altogether and instead emphasize 
connectionist and dynamical systems views. Such 
views often, but not always, eschew the require-
ment for an overt representation as a vehicle with 
content that exists in some correspondence with 
the world. Instead, behavior is the output of a dis-
tributed network operating on an input. A central 
pattern generator, for example, can drive loco-
motion without having to explicitly represent a 
leg anywhere inside its circuitry. Larger networks 
could operate as a scaled-up version of this.

Proponents of such views 
may still want to apply the 

term “representation.” For 
example, single cells in 

a central pattern gen-
erator that correlate 
with leg kinematic vari-
ables such as position 
and speed could be said 

to represent them. But 
mere correlation does not 

seem like a compelling basis 
for attributing representation. 

There may also be a parallel lesson 
to draw in AI: Peering into artificial neural 

networks and finding responses that look like the 
ones found in the primate cortex has led some 
to posit similar representations. But do similar 
responses in a specific layer mean that a simi-
lar overall representation is present? Again, as in 
the single-cell case, it is not clear what applying 
the term “representation” would mean, beyond 
indicating that task-relevant information can be 
found distributed throughout the network.

“We propose that  

a catalog of the different  

senses of representation 

would greatly facilitate 

communication in  

cognitive science.”
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W
hat to do? One temptation is to 
remain vague about what the term 
“representation” means, to avoid 

impeding its use in any discipline-specific 
research. Another temptation is to deflate its 
meaning to its most minimal form: Use it when-
ever there is information in neural data, single 
neurons or neural populations that correlates 
with task features in the broadest sense. Alter-
natively, perhaps the term should be reserved 
for only the most maximal form: referring to a 
discrete type of true neural state with flexible 
abstract content, which can be activated absent 
its original cause—i.e., a representation that is in 
fact used as a representation.

Some argue that this last type of representa-
tion should be considered categorically distinct 
from other, looser senses of the term. It might 
even be that this is what distinguishes uniquely 
human thinking. Still others, largely in aller-
gic response to this more fleshed-out notion of 
representation, have called for the term’s elimi-
nation from the scientific literature (A 1990 paper 
by Walter Freeman and Christine Skarda is an 
unambiguous example, but see also 2019 work by 
Rafael Nunez and his colleagues, a 2019 article by 
Romain Brette, a 2017 paper by Daniel Hutto and 
Erik Myin, Alva Nöe’s 2006 book on perception 
and Anthony Chemero’s 2011 book on cognitive 
science).

Because the options are either problem-
atic or controversial, we propose that a catalog 
of the different senses of representation would 
greatly facilitate communication in cognitive sci-
ence. Such a taxonomy would enable scientists 

to choose descriptors of varying levels of speci-
ficity and inspire researchers to more carefully 
consider when, how and whether they use it, and 
to communicate what they mean more explic-
itly. The taxonomy need not favor any particular 
theory of representation, nor even assume its 
existence; rather, it would help set the terms for 
discussion surrounding an otherwise ambiguous 
and confusing term. We submit that there is a 
growing will in neuroscience, philosophy and the 
cognitive sciences to engage in just such a proj-
ect (see also a 1987 essay by Ernst von Glaserfeld 
and a June 2023 paper by Luis Favela and Edouard 
Machery).

The RPPF is hosted at Trinity College Dublin in Ire-
land and is funded by an Institutional Strategy 
Support Fund grant from the Wellcome Trust.
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When do neural  
representations give rise  
to mental representations?

I L L U S T R AT I O N  B Y  I B R A H I M  R AY I N TA K AT H

126 • The Transmitter



To answer this question,  

consider the animal’s umwelt, or what  

it needs to know about the world.

B Y  K E V I N  M I T C H E L L ,  

A S S O C I AT E  P R O F E S S O R  O F 

G E N E T I C S  A N D  N E U R O S C I E N C E , 

T R I N I T Y  C O L L E G E  D U B L I N

I
t is often said that “the mind is what the brain does.” 
Modern neuroscience has indeed shown us that mental 
goings-on rely on and are in some sense entailed by neu-

ral goings-on. But the truth is that we have a poor handle on 
the nature of that relationship. One way to bridge that divide 
is to try to define the relationship between neural and men-
tal representations.

The basic premise of neuroscience is that patterns of 
neural activity carry some information—they are about 
something. But not all such patterns need be thought of as 
representations; many of them are just signals. Simple cir-
cuits such as the muscle stretch reflex or the eye-blink reflex, 
for example, are configured to respond to stimuli such as the 
lengthening of a muscle or a sudden bright light. But they 
don’t need to internally represent this information—or make 
that information available to other parts of the nervous sys-
tem. They just need to respond to it.

More complex information processing, by contrast, such 
as in our image-forming visual system, requires internal 
neural representation. By integrating signals from multi-
ple photoreceptors, retinal ganglion cells carry information 
about patterns of light in the visual stimulus—particularly 
edges where the illumination changes from light to dark. 
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This information is then made available to the 
thalamus and the cortical hierarchy, where addi-
tional processing goes on to extract higher- and 
higher-order features of the entire visual scene.

Scientists have elucidated the logic of these hier-
archical systems by studying the types of stimuli to 
which neurons are most sensitively tuned, known 
as “receptive fields.” If some neuron in an early cor-
tical area responds selectively to, say, a vertical line 
in a certain part of the visual field, the inference is 
that when such a neuron is active, that is the infor-
mation that it is representing. In this case, it 
is making that information available 
to the next level of the visual sys-
tem—itself just a subsystem 
of the brain.

Usually, patterns of 
neural activity across 
local populations repre- 
sent such information. 
And crucially, the pop-
ulations and circuits that 
interpret such representa-
tions are causally sensitive 
to the meaning of those mac-
roscale patterns, rather than to the 
details of the instantaneous neural instantiations.

But does that activity of representing imply 
that the pattern is a representation of the type 
envisaged in cognitive science—i.e., a distinct 
cognitive object? At what point do intermedi-
ate neural representations give rise to high-level 
mental representations? When does distributed, 
devolved signal processing become centralized 
cognition? A good way to approach this question 
is to ask: When does it need to?

T
he point of perceptual information pro-
cessing systems is ultimately to allow the 
organism to know what is out in the world 

and what the organism should do about it. Any 
given scenario will involve myriad factors and 
relationships, including dynamically changing 
arrays of threats and opportunities—too many to 
be hard-coded into reflexive responses. To guide 
flexible behavior, sensory information and infor-
mation about internal states have to be submitted 

to a central cognitive system so this infor-
mation can be adjudicated over in a 

common space. Such a system 
can and should only operate 

with some kinds of infor-
mation—information at 
the right level.

We don’t want to 
think about the photons 
hitting our retina, even 

though our neural systems 
are detecting and process-

ing that information. That’s not 
the right level of information to 

link to stored knowledge of the world or 
to combine with data from other sensory modali-
ties. What we need to think about are the objects in 
the world that these photons are bouncing off of 
before they reach our eyeballs. We, as behaving 
organisms, need to cognitively work with our per-
ceptual inferences, not our sensory data.

For any organism, we can ask two related 
questions: What kinds of things can it think 
about? And what kinds of things should it think 
about? Here, an ecological approach is valuable. 

“When does  

distributed, devolved  

signal processing become 

centralized cognition? A good 

way to approach this question  

is to ask: When does it  

need to?”
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Jakob von Uexküll introduced the concept of the 
“umwelt” of an organism, which might be trans-
lated as its “experienced world.” This idea begins 
with the specific sensorium of the organism, 
which will vary among species and sometimes 
even individuals. Different organisms can smell 
different chemicals, for example, or detect differ-
ent wavelengths of light or frequencies of sound, 
while being oblivious to many other factors in 
their environment.

But the umwelt also crucially entails valence, 
salience and relevance— it is a self-centered map 
of things in the environment that the organism 
can detect and that it cares about. Perception in 
this view is not the neutral, passive acquisition of 
information. It is an active process of sense-mak-
ing, which results in a highly filtered, value-laden, 
action-oriented landscape of affordances. If an 
organism is thinking at all, these are the things 
that it needs to think about.

Using the word “think” in this context invites 
all kinds of anthropomorphism, of course, and 
risks inflating to the level of cognition what might 
be better framed in cybernetic terms. But if cog-
nition can be defined as using information to 
adaptively guide behavior in novel circumstances, 
then perhaps we can think of a continuum from 
simpler control systems to the more abstract cog-
itation that humans engage in. That is, after all, 
the trajectory that evolution had to follow. And if 
we allow that many animals have some kind of 
central arena where the highest-level inferences 
become the objects of cognition, we can ask what 
such inferences could be about.

That question may be difficult or even impossi-
ble to answer for animals incapable of self-report. 

But we may be able at least to say what various 
organisms can’t be thinking about. A nematode 
can’t be thinking about objects far away from it 
because it has no means to detect them. Its cog-
nitive umwelt is consequently limited to the here 
and now. A lamprey can’t be thinking about types 
of objects because it doesn’t have enough levels 
of processing to abstract the requisite categori-
cal relationships. And a human baby can’t think 
about next week because its cognitive horizon 
doesn’t extend that far.

Each animal’s potential cognitive umwelt—
what it could think about—is thus limited not 
just by its sensory capabilities, but also by the 
levels of internal processing it has, as well as its 
capacity for long-term memory and long-term 
planning. But there are also active limits on what 
any organism does think about. All the low-level 
information processing gives rise to the objects 
of cognition, but in a highly selective, filtered 
fashion. High-level cognition is useful precisely 
because it ignores so much low-level detail—
because of what’s not on your mind.

Thus, only a subset of neural represen-
tations—the meaningful elements that are 
processed by various neural subsystems—rise to 
the level of mental representations—the elements 
of cognition. Moreover, only a subset of those 
mental objects—a varying subset, depending on 
circumstances—may be things that we need to 
think about consciously. It’s thus too vague and 
all-inclusive to simply say, “The mind is what 
the brain does.” Our mental goings-on are more 
likely entailed by a dynamically shifting, adap-
tively filtered subset of neural goings-on.
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H O W  T O  T E A C H  T H I S  PA P E R : 

This column by Ashley Juavinett guides  
educators and self-learners through recent  
seminal neuroscience papers.

F R O M  B E N C H  T O  B O T :

In the “From bench to bot” series, neuroscientist  
and science writer Tim Requarth explores the promises 
and pitfalls of artificial-intelligence tools in writing.

How to teach this paper: ‘Neural 

population dynamics during 

reaching,’ by Churchland & 

Cunningham et al. (2012)
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How to teach this paper: 
‘Neural population  
dynamics during reaching,’  
by Churchland & Cunningham  
et al. (2012)

I L L U S T R AT I O N  B Y  M A R G E A U X  W A LT E R
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This foundational paper, with more 

than 1,500 citations, is an important 

departure from early neuroscience 

research. Don’t be afraid of the math  

in the first paragraph.

B Y  A S H L E Y  J U AV I N E T T, 

A S S O C I AT E  T E A C H I N G  P R O F E S S O R 

O F  N E U R O B I O L O G Y,  U N I V E R S I T Y 

O F  C A L I F O R N I A ,  S A N  D I E G O

W
ith almost 1,500 citations, “Neural population 
dynamics during reaching,” published in Nature 
in 2012, is a foundational paper in systems and 

computational neuroscience. It presents the first evidence 
as well as a thorough theoretical footing for the idea that 
populations of neurons generate movement in a rather stun-
ning way: with dynamics that rotate. This paper would be a 
great fit for systems or computational neuroscience classes, 
or an interesting applied example for a mathematics class. 
Given its focus on movement, it would also be a great choice 
for a class focused on motor systems or disorders of move-
ment and could be tied to a discussion about brain-computer 
interfaces.

This paper is an important departure from early neuro-
science research, which focused on individual neurons that 
represented information by changing their firing rate. Such 
neurons—largely studied in the visual system—were tuned 
to specific features, such as the orientation of a black and 
white bar, a direction of movement, or even pictures of Jen-
nifer Aniston. But for a long time, movement researchers 
struggled to find neurons that reliably responded to only 
one feature of a movement. In the visual cortex, each neu-
ron had a role; in the motor cortex, each neuron seemed to 
be doing everyone else’s job.



That’s where Krishna Shenoy’s team came in. 
Shenoy turned to more complex computational 
methods to help translate the neural activity in 
the motor cortex. Specifically, he championed 
a class of “dynamic” methods that ultimately 
became central to understanding how the brain 
produces movements and are the heart of “Neu-
ral population dynamics during reaching.”

PA P E R  O V E R V I E W

A great pedagogical feature of this paper is 
that it first takes a broad look at the neural activ-
ity underlying different movements as a means 
of pointing readers to a surprising observation: 
Neural population activity looks similar for dif-
ferent kinds of movement. Some movements, 
such as crawling, are visibly rhythmic, so this is 
a nice entry point to understand why movements 
may be generated by oscillating neural activity. 
By focusing first on the leech example given in 
the paper (perhaps bolstered by William Kristan’s 
papers cited in that section), students can develop 
an intuition for what “rhythmic” means in this 
context.

From there, we can make the extension to 
oscillating firing rates in different kinds of move-
ments, such as walking or reaching. Although 
these movements aren’t oscillatory, their neural 
population response is—weird. Mark Church-
land, John Cunningham and their colleagues 
use this observation to motivate a deep dive into 
more data. Shenoy gave an elegant, convincing 
talk about this transition from representational 
frameworks to dynamic systems in 2013, which 
I strongly recommend watching for background.

As an instructor, you might choose to stop at 
the first figure; it is rich enough in theory and 
analysis, yet very simply diagrammed (and with 
a cute leech drawing). But figures 2 through 5 
show raw electrophysiology (single- and multi-
unit arrays as well as electromyography) data 
from monkeys as they are reaching, which can 
be useful for students to see. They also illustrate 
another unexpected feature of the data: Rotations 
don’t seem to depend on the actual movement 
direction and don’t relate to the actual reach path 
of a monkey.

As the finale, the paper presents a model that 
illustrates that activity created by a generator 
model (which emulates a dynamical system) is 
more closely matched to the neural data than are 
EMG or two other kinds of simulated data mod-
els, which only take into account the features 
of movement, such as velocity, acceleration or 
direction. There is a lot packed into the final fig-
ure; as an instructor, how much you explain these 
models depends on your own comfort level and 
how relevant they are to your course. For most 
neuroscience courses, it’s sufficient to say that 
when you simulate data, you’re doing so because 
it allows you to generate activity with known 
properties or that can perform a particular task, 
so that you can see what happens when you pass 
such data through your analysis. For the Church-
land paper, the only data that produce rotational 
dynamics are the neural data that the research-
ers have recorded and the generator model. In 
later work, David Sussillo, Churchland, Matthew 
Kaufman and Shenoy showed that a recurrent 
neural network would also spontaneously adopt 
brain-like, quasi-oscillatory patterns.
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S T I C K Y  P O I N T S

Oh hello, math.

This paper does something that is either a 
very bold move for a neuroscience article or a 
very big faux pas, depending on your relation-
ship with math: It includes equations in the first 
paragraph. From a student perspective, this can 
be quite daunting and an immediate reason to 
think, “There’s no way I’m going to understand 
this paper.” (Most biology students fear math.) 
But educators and students alike should not fear 
the math in this paper. Those equations are actu-
ally saying something very simple.

Let’s start with Equation 1, which serves as 
the null hypothesis of the paper. It represents 
the prevailing idea in the field: A single neuron 
represents different features of a stimulus. In 
this equation, a neuron’s firing rate is predicted 
by some combination of the parameters of a 
stimulus. For a limb movement, this might be 
the intensity of muscle contraction or the direc-
tion of the limb. As an instructor, it is up to you 
whether you would like to explain the nuances of 
this equation, and it may be a nice opportunity to 
review how mathematicians speak.

The second equation is the dynamical sys-
tem equation, and even though it’s shorter, it’s 
conceptually more complex. Now we’re trying to 
compute the firing rate of all neurons (the pop-
ulation code). The derivative of the population 
code is determined by some unknown function 
that takes into account the population activity, 
plus some external time-varying input.

The final equation, found at the end of the 
results, is similar to Equation 2, but written in 
the spirit of linear algebra. Given the observa-
tions in this paper, the authors conclude that just 
one matrix can capture the dynamics of neural 
activity underlying reaching, regardless of the 
properties of the reach.

How much you dig into this math depends a 
bit on the scope of your course—although dynam-
ical systems is the theoretical backdrop, it’s not 
central to understanding the concepts of this 
paper. If you or your students desire a deeper 
dive, the obvious choice is the book “Dynamical 
Systems in Neuroscience” (2010).

“Educators and students alike should  

not fear the math in this paper.  

Those equations are actually saying  

something very simple.”
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D I M E N S I O N A L I T Y  R E D U C T I O N

Beyond interpreting the equations in the 
paper, there is also the big, flat, and rotating ele-
phant in the room: dimensionality reduction. 
The paper, and this entire body of work, uses a 
version of principal component analysis (PCA) 
to project population activity into a lower-di-
mensional space where rotational features can 
be seen and measured. Unless you’re teaching 
an upper-division computational neuroscience, 
modeling or mathematics course, you’re proba-
bly not going to dive into the math behind PCA. 
That said, I think it’s entirely possible to build an 
intuition for it using graphical explanations, such 
as the one below. Cunningham and Byron Yu, a 
neuroscientist at Carnegie Mellon University in 
Pittsburgh, Pennsylvania, also have a very acces-
sible review article on the topic, and Neuromatch 
Academy has a dimensionality reduction tutorial 
with videos and code, as well as a tutorial on dis-
crete dynamical systems.

T H E  S C I E N T I S T S  B E H I N D  T H E  PA P E R

Krishna Shenoy, the principal investigator 
behind this paper, made major contributions to 
the fields of neural dynamics and brain computer 
interfaces. He died of pancreatic cancer earlier 
this year. If you would like to learn more about 
him and his work more broadly, please read “A sci-
entist’s quest for better brain-computer interfaces 
opens a window on neural dynamics” or this obit-
uary by Mark Churchland and Paul Nuyujukian.

Shenoy’s team originally wrote the paper with 
the model first, but after leaving many people 
quite puzzled at their well-attended Society for 
Neuroscience conference poster, they reworked 
their story. Churchland and Cunningham rallied 
at the benches outside of the conference, staring 
over San Diego Bay, and decided they needed to 
reverse the order: unexpected results first, model 
second.

“To me, the real beauty  

of the original idea is that it made  

sense of a bunch of diverse facts,  

including otherwise-confusing features  

of single-neuron responses.”
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Now, 11 years after the paper’s publication, 
Churchland reflects fondly on the ideas they pre-
sented and how they shifted the field:

“To me, the real beauty of the original idea 
is that it made sense of a bunch of diverse facts, 
including otherwise-confusing features of sin-
gle-neuron responses. The hypothesis thus had 
appeal to me long before we were able to test 
that final prediction . . . At that time, it took a 
long time to get someone to understand both the 
essence and the appeal of the hypothesis. They 
were only willing to invest the time if they saw 
a novel result, presented first, that demanded an 
explanation.”

This paper was, at its core, a team effort, and 
not only between the seven authors. Churchland 
also credits Larry Abbot and Evan Schaffer with 
helping to develop the ideas of the paper, as well 
as the approach to sharing it with other scientists.

F U T U R E  L E S S O N S

This paper spawned an entire field of scien-
tists looking at the rotational dynamics in not 
just motor systems, but also cognitive ones. Ulti-
mately, many still wonder why these dynamics 
are there, and what their role is. If you’re looking 
for some food for thought on the purpose of these 
rotations, see my article “Discovery of rotational 
dynamics.” This could also open up an interest-
ing discussion about the links between structure, 
function and computation.

One great way for students to engage with this 
paper is to work with similar data themselves. 
This interactive notebook provides students with 
an introductory implementation of PCA using 
Python, and Yu has developed a problem set for 
MATLAB. Finally, Churchland and others have 
since built on this work, asking questions about 
what happens when trajectories of networks get 
tangled, and he spoke about it in 2020 in a lecture 
at the Bernstein Center for Computational Neuro-
science in Munich, Germany.
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From bench to bot:  
A scientist’s guide  
to AI-powered writing

I L L U S T R AT I O N  B Y  R E B E C C A  H O R N E  /  A D O B E  F I R E F LY
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I was initially skeptical of artificial-

intelligence tools such as ChatGPT for 

scientific writing. But after months of using  

and teaching generative artificial intelligence, 

I have come to realize that it has a place in 

the scientific writer’s tool kit, even if it can’t 

write that grant for you from scratch.

B Y  T I M  R E Q U A R T H ,  J O U R N A L I S T 

A N D  L E C T U R E R ,  N Y U  G R O S S M A N 

S C H O O L  O F  M E D I C I N E

A
s a scientist, you’re a professional writer. You write 
grants to fund your research and papers to share 
your findings with the world. You work under dead-

line—and under pressure. You may not get paid per word or 
publish bestselling novels, but your livelihood depends on 
consistently producing quality writing on time.

That doesn’t necessarily mean writing comes easily to 
you. So, when generative artificial-intelligence (AI) tools 
such as ChatGPT burst onto the scene late last year, per-
haps you were allured by the in silico siren call. Could AI 
make this critical but challenging part of your job a little 
less stressful? Or perhaps you looked on with skepticism. 
Sure, these chatbots might be great for churning out mar-
keting copy, but for scientists they’re just a distraction, a 
computationally expensive way to produce semi-accurate, 
uninspired text.

As both a professional science writer and an instructor 
of scientific writing, I was curious about this new technol-
ogy while also wary of its limitations and implications—the 
biases baked into this technology and the ethically question-
able way it was built are causes for real concern. At the same 
time, I knew I couldn’t pretend tools such as ChatGPT don’t 
exist, because I’d need to be able to guide students, postdoc-
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toral researchers and principal investigators on 
using them—it’s literally my job: For the past five 
years, I’ve been working full time at the Vilcek 
Institute of Graduate Biomedical Sciences at the 
NYU Grossman School of Medicine in New York 
City to develop and teach a scientific communi-
cation curriculum. If ChatGPT and other such 
innovations turned out to be powerful writing 
aids, I wouldn’t want people with brilliant ideas 
but little GPT savvy to get left behind. If, on the 
other hand, AI-assisted writing was mostly hype, 
I’d need to show people who were already using it 
why it wasn’t going to further their writing goals.

Since ChatGPT’s launch in late 2022, I’ve 
immersed myself in the wonders and woes of 
generative AI. I’ve advised many scientists at my 
home institution and given talks and workshops 
on this fast-evolving field.

This monthly column will distill what I’ve 
learned—and am still learning—about how best to 

incorporate these tools into your writing process. 
I’ll admit, I was initially skeptical of ChatGPT and 
similar tools for scientific writing. For intellec-
tual work, writing struck me as too intimately 
linked to thinking to outsource it to a chatbot. “If 
people cannot write well, they cannot think well, 
and if they cannot think well, others will do their 
thinking for them,” goes one of George Orwell’s 
more famous quotes. I didn’t trust ChatGPT to do 
the thinking for myself or those I teach.

But after months of using and teaching gener-
ative AI, I have come to realize that it has a place 
in the scientific writer’s tool kit, even if it can’t 
write that grant for you from scratch. And the 
technology is likely only going to get more pow-
erful and become more ubiquitous. In my view, 
now is not the time for professional writers—sci-
entists included—to bury their heads in the sand. 
In a decade, lacking proficiency in generative AI 
might be akin to not knowing how to use a search 
engine today.

“Now is not the time for  

professional writers—scientists included— 

to bury their heads in the sand.  

In a decade, lacking proficiency in generative  

AI might be akin to not knowing how  

to use a search engine today.”
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In the columns that follow, I plan to offer a 
series of use cases that explore ways that this 
technology can make writing better, faster or eas-
ier. I also won’t shy away from telling you when 
generative AI simply isn’t up to the task. For each 
of these use cases, I’ll draw on my years of expe-
rience teaching writing with traditional pedagogy 
and also offer practical AI-assisted workflows. 
We’ll dive into the dark art of “prompt engineer-
ing,” which is a fancy term for getting AI to do what 
you want it to. Equally important, we’ll discuss 
strategies for “output curation,” or how to ensure 
you always retain the authority to discern that 
AI responses are meeting standards of accuracy 
and rhetorical impact. In the end, I can’t promise 
you that AI will solve all your writing troubles—
and frankly I wouldn’t trust anyone who claims it 
will—but I can promise you that you’ll have more 
realistic expectations about what you can ask of 
AI, and what will still be asked of you.

U S E R  B E W A R E

Each column will appear with this warning, 
so heed it now: When exploring the use of AI, it’s 
crucial to be aware that to incorporate it into our 
writing life is to navigate a minefield of possible 
dangers. AI can confidently produce convincing 
but inaccurate information (often called “hallu-
cinations”), making it untrustworthy for factual 
queries, which means it is crucial that you have 
verification checkpoints in your workflow. Even 
accurate AI-generated content can be biased. It is 
well documented, for example, that social biases, 
such as racism and sexism, are embedded in and 
exacerbated by AI systems. AI may also recapit-
ulate bias in subtler ways, such as by steering 

users toward established scientific ideas, which 
are more likely to be represented in the AI’s train-
ing data.

Data-privacy concerns arise when using 
standard web interfaces, as user inputs can be 
adopted to train future AI models, though certain 
technical workarounds offer more protection. 
And at least one major journal (Science) and the 
U.S. National Institutes of Health have banned 
the use of AI for some purposes. Lastly, although 
generative AI generally does not pose a high risk 
of detectable plagiarism, that risk may increase 
for highly specialized content that is poorly rep-
resented in the training data (which might not be 
much of a concern for the typical user but could 
be a larger concern for the typical scientist). 
Some AI systems in development may overcome 
some of these problems, but none will be perfect. 
We’ll discuss these and other issues at length as 
they arise.
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