David Barack is a philosopher and neuroscientist who studies the neural circuits of foraging behavior and the conceptual foundations of cognitive neuroscience. He is a postdoctoral researcher at the University of Pennsylvania. After earning his B.A. in consciousness studies at Pitzer College, he received his M.A. in philosophy from the University of Wisconsin-Milwaukee and his Ph.D. in philosophy from Duke University, where he also received a certificate in cognitive neuroscience. He is currently writing a book on the neurodynamical foundations of mind.

David Barack
Research associate in neuroscience and philosophy
University of Pennsylvania
From this contributor
Must a theory be falsifiable to contribute to good science?
Four researchers debate the role that non-testable theories play in neuroscience.

Must a theory be falsifiable to contribute to good science?
Explore more from The Transmitter
Food for thought: Neuronal fuel source more flexible than previously recognized
The cells primarily rely on glucose—rather than lactate from astrocytes—to generate energy, according to recent findings in mice.

Food for thought: Neuronal fuel source more flexible than previously recognized
The cells primarily rely on glucose—rather than lactate from astrocytes—to generate energy, according to recent findings in mice.
Claims of necessity and sufficiency are not well suited for the study of complex systems
The earliest studies on necessary and sufficient neural populations were performed on simple invertebrate circuits. Does this logic still serve us as we tackle more sophisticated outputs?

Claims of necessity and sufficiency are not well suited for the study of complex systems
The earliest studies on necessary and sufficient neural populations were performed on simple invertebrate circuits. Does this logic still serve us as we tackle more sophisticated outputs?
Subthalamic plasticity helps mice squelch innate fear responses
When the animals learn that a perceived threat is not dangerous, long-term activity changes in a part of the subthalamus suppress their instinctive fears.

Subthalamic plasticity helps mice squelch innate fear responses
When the animals learn that a perceived threat is not dangerous, long-term activity changes in a part of the subthalamus suppress their instinctive fears.