Elizabeth Berry-Kravis is professor of child neurology at Rush University Medical Center in Chicago.
Elizabeth Berry-Kravis
Professor
Rush University Medical Center
From this contributor
Analysis offers new hope for failed fragile X drug
Eye tracking shows that mavoglurant, a once-abandoned experimental drug for fragile X syndrome, enters the brain and boosts social interest, says Elizabeth Berry-Kravis.

Analysis offers new hope for failed fragile X drug
Questions for Elizabeth Berry-Kravis: Dodging mouse traps
A mouse model of fragile X syndrome lacks a key feature of the condition, prompting researchers to look for other ways to test treatments.

Questions for Elizabeth Berry-Kravis: Dodging mouse traps
Questions for Elizabeth Berry-Kravis: Measuring drug effects
Drugs designed to treat fragile X syndrome have yet to show substantial benefits in people. But rather than abandon them, child neurologist Elizabeth Berry-Kravis suggests a new way to measure their effectiveness.

Questions for Elizabeth Berry-Kravis: Measuring drug effects
Explore more from The Transmitter
‘Digital humans’ in a virtual world
By combining large language models with modular cognitive control architecture, Robert Yang and his collaborators have built agents that are capable of grounded reasoning at a linguistic level. Striking collective behaviors have emerged.
‘Digital humans’ in a virtual world
By combining large language models with modular cognitive control architecture, Robert Yang and his collaborators have built agents that are capable of grounded reasoning at a linguistic level. Striking collective behaviors have emerged.
Food for thought: Neuronal fuel source more flexible than previously recognized
The cells primarily rely on glucose—rather than lactate from astrocytes—to generate energy, according to recent findings in mice.

Food for thought: Neuronal fuel source more flexible than previously recognized
The cells primarily rely on glucose—rather than lactate from astrocytes—to generate energy, according to recent findings in mice.
Claims of necessity and sufficiency are not well suited for the study of complex systems
The earliest studies on necessary and sufficient neural populations were performed on simple invertebrate circuits. Does this logic still serve us as we tackle more sophisticated outputs?

Claims of necessity and sufficiency are not well suited for the study of complex systems
The earliest studies on necessary and sufficient neural populations were performed on simple invertebrate circuits. Does this logic still serve us as we tackle more sophisticated outputs?