Megan Scudellari is a freelance writer based in Durham, North Carolina.
Megan Scudellari
Freelance Writer
SFARI
From this contributor
Brains of toddlers with autism out of sync
Many toddlers with autism have weak connections between the two sides of the brain, according to the first-ever analysis of brain connections in young children with the disorder, published 23 June in Neuron.
Autism candidate gene implicated in social deficits
Mutations in a protein called GRIP1, important for the function of synapses — the junctions between neurons — may contribute to social deficits in autism, researchers reported 22 March in the Proceedings of the National Academy of Sciences.

Autism candidate gene implicated in social deficits
Explore more from The Transmitter
Emotion research has a communication conundrum
In 2025, the words we use to describe emotions matter, but their definitions are controversial. Here, I unpack the different positions in this space and the rationales behind them—and I invite 13 experts to chime in.

Emotion research has a communication conundrum
In 2025, the words we use to describe emotions matter, but their definitions are controversial. Here, I unpack the different positions in this space and the rationales behind them—and I invite 13 experts to chime in.
Autism-linked copy number variants always boost autism likelihood
By contrast, varied doses of the same genes decrease or increase the odds of five other conditions, with distinct biological consequences, two new preprints show.

Autism-linked copy number variants always boost autism likelihood
By contrast, varied doses of the same genes decrease or increase the odds of five other conditions, with distinct biological consequences, two new preprints show.
Everything everywhere all at once: Decision-making signals engage entire brain
The findings, gleaned from the most comprehensive map yet of brain activity during decision-making in mice, show that the process is even more distributed than previously thought.

Everything everywhere all at once: Decision-making signals engage entire brain
The findings, gleaned from the most comprehensive map yet of brain activity during decision-making in mice, show that the process is even more distributed than previously thought.