Michael E. Goldberg is David Mahoney Professor of Brain and Behavior in the departments of neuroscience, neurology, psychiatry and ophthalmology at Columbia University College of Physicians and Surgeons, director of the Mahoney-Keck Center for Brain and Behavior Research, and is an active clinical neurologist. His neuroscience research focuses on the physiological basis of cognitive processes such as visual attention, spatial perception and decision-making. He earned his M.D. from Harvard Medical School in 1968. From 1978 to 2001, Goldberg was a senior investigator at the Laboratory of Sensorimotor Research at the National Eye Institute in Bethesda, Maryland. He is a fellow of the American Academy of Arts and Sciences and the American Association for the Advancement of Science, and an elected member of the National Academy of Sciences. He is a past president of the Society for Neuroscience, and now chair of the society’s Committee on Animals in Research.
Michael E. Goldberg
David Mahoney Professor of Brain and Behavior
Columbia University
Explore more from The Transmitter
Going against the gut: Q&A with Kevin Mitchell on the autism-microbiome theory
A new review of 15 years of studies on the connection between the microbiome and autism reveals widespread statistical and conceptual errors.
Going against the gut: Q&A with Kevin Mitchell on the autism-microbiome theory
A new review of 15 years of studies on the connection between the microbiome and autism reveals widespread statistical and conceptual errors.
Timing tweak turns trashed fMRI scans into treasure
Leveraging start-up “dummy scans,” which are typically discarded in imaging analyses, can shorten an experiment’s length and make data collection more efficient, a new study reveals.
Timing tweak turns trashed fMRI scans into treasure
Leveraging start-up “dummy scans,” which are typically discarded in imaging analyses, can shorten an experiment’s length and make data collection more efficient, a new study reveals.
Perimenopause: An important—and understudied—transition for the brain
Many well-known perimenopause symptoms arise in the brain, but we still know little about the specific mechanisms at play. More research—in both animals and humans—is essential.
Perimenopause: An important—and understudied—transition for the brain
Many well-known perimenopause symptoms arise in the brain, but we still know little about the specific mechanisms at play. More research—in both animals and humans—is essential.