David Barack is a philosopher and neuroscientist who studies the neural circuits of foraging behavior and the conceptual foundations of cognitive neuroscience. He is a postdoctoral researcher at the University of Pennsylvania. After earning his B.A. in consciousness studies at Pitzer College, he received his M.A. in philosophy from the University of Wisconsin-Milwaukee and his Ph.D. in philosophy from Duke University, where he also received a certificate in cognitive neuroscience. He is currently writing a book on the neurodynamical foundations of mind.

David Barack
Research associate in neuroscience and philosophy
University of Pennsylvania
From this contributor
Must a theory be falsifiable to contribute to good science?
Four researchers debate the role that non-testable theories play in neuroscience.

Must a theory be falsifiable to contribute to good science?
Explore more from The Transmitter
More than two dozen papers by neural tube researcher come under scrutiny
One of the studies, published in 2021 in Science Advances, received an editorial expression of concern on 21 May, after the journal learned that an institutional review of alleged image problems is underway.

More than two dozen papers by neural tube researcher come under scrutiny
One of the studies, published in 2021 in Science Advances, received an editorial expression of concern on 21 May, after the journal learned that an institutional review of alleged image problems is underway.
On the importance of reading (just not too much)
The real fun of being a neuroscientist, and maybe the key to asking and answering new questions, is to think big and take intellectual risks.

On the importance of reading (just not too much)
The real fun of being a neuroscientist, and maybe the key to asking and answering new questions, is to think big and take intellectual risks.
How developing neurons simplify their search for a synaptic mate
Streamlining the problem from 3D to 1D eases the expedition—a strategy the study investigators deployed to rewire an olfactory circuit in flies.

How developing neurons simplify their search for a synaptic mate
Streamlining the problem from 3D to 1D eases the expedition—a strategy the study investigators deployed to rewire an olfactory circuit in flies.