Lydia Hickman is a graduate student in the Cook Lab at the University of Birmingham in the United Kingdom. In her Ph.D. work, she explores the fundamental biological mechanisms underlying motor function and social cognition in the context of autism and Parkinson’s disease. Lydia co-founded the U21 Autism Research Network, an international collaboration among six research groups aiming to improve diversity and inclusion in autism research.
Lydia Hickman
Graduate student
University of Birmingham in the United Kingdom
From this contributor
Ways to make autism research more diverse and inclusive
Scientists must focus on the importance of representative study samples and of engaging with diverse autism community members.
Ways to make autism research more diverse and inclusive
Explore more from The Transmitter
Nonhuman primate research to lose federal funding at major European facility
The Dutch Senate has ordered the Biomedical Primate Research Centre in the Netherlands to shift its funding away from primate experiments by 2030.
Nonhuman primate research to lose federal funding at major European facility
The Dutch Senate has ordered the Biomedical Primate Research Centre in the Netherlands to shift its funding away from primate experiments by 2030.
Image integrity issues create new headache for subarachnoid hemorrhage research
First-time sleuths found potentially problematic images in hundreds of papers about early brain injury after subarachnoid hemorrhage.
Image integrity issues create new headache for subarachnoid hemorrhage research
First-time sleuths found potentially problematic images in hundreds of papers about early brain injury after subarachnoid hemorrhage.
Ramping up cortical activity in early life sparks autism-like behaviors in mice
The findings add fuel to the long-running debate over how an imbalance in excitatory and inhibitory signaling contributes to the autism.
Ramping up cortical activity in early life sparks autism-like behaviors in mice
The findings add fuel to the long-running debate over how an imbalance in excitatory and inhibitory signaling contributes to the autism.