Randy McIntosh is professor and BC leadership chair in neuroscience and technology transfer across the lifespan, and director of the Institute for Neuroscience and Neurotechnology, at Simon Fraser University. He holds a Ph.D. in psychology and neuroscience with a strong background in statistics. His research journey began at the Rotman Research Institute at the University of Toronto, where he developed a keen interest in understanding aging and cognition. McIntosh is the co-lead for the team that created The Virtual Brain (thevirtualbrain.org), a groundbreaking platform that unites global research efforts.
Randy McIntosh
Director, Institute for Neuroscience and Neurotechnology
Simon Fraser University
Selected articles
- “Partial least squares analysis of neuroimaging data: Applications and advances” | NeuroImage
- “Contexts and catalysts: A resolution of the localization and integration of function in the brain” | Neuroinformatics
- “Emerging concepts for the dynamical organization of resting-state activity in the brain” | Nature Reviews Neuroscience
- “Resting brains never rest: Computational insights into potential cognitive architectures” | Trends in Neurosciences
- “The hidden repertoire of brain dynamics and dysfunction” | Network Neuroscience
Explore more from The Transmitter
New organoid atlas unveils phenotypic signatures of multiple neurodevelopmental conditions
The comprehensive resource details data on microcephaly, polymicrogyria, epilepsy and intellectual disability from 352 people.
New organoid atlas unveils phenotypic signatures of multiple neurodevelopmental conditions
The comprehensive resource details data on microcephaly, polymicrogyria, epilepsy and intellectual disability from 352 people.
Can neuroscientists decode memories solely from a map of synaptic connections?
Five experts discuss the progress, possibilities and hurdles of decoding a “nontrivial” memory from an organism just by analyzing its brain connectivity patterns.
Can neuroscientists decode memories solely from a map of synaptic connections?
Five experts discuss the progress, possibilities and hurdles of decoding a “nontrivial” memory from an organism just by analyzing its brain connectivity patterns.
AI-assisted coding: 10 simple rules to maintain scientific rigor
These guidelines can help researchers ensure the integrity of their work while accelerating progress on important scientific questions.
AI-assisted coding: 10 simple rules to maintain scientific rigor
These guidelines can help researchers ensure the integrity of their work while accelerating progress on important scientific questions.