Elizabeth Berry-Kravis is professor of child neurology at Rush University Medical Center in Chicago.
Elizabeth Berry-Kravis
Professor
Rush University Medical Center
From this contributor
Analysis offers new hope for failed fragile X drug
Eye tracking shows that mavoglurant, a once-abandoned experimental drug for fragile X syndrome, enters the brain and boosts social interest, says Elizabeth Berry-Kravis.
Analysis offers new hope for failed fragile X drug
Questions for Elizabeth Berry-Kravis: Dodging mouse traps
A mouse model of fragile X syndrome lacks a key feature of the condition, prompting researchers to look for other ways to test treatments.
Questions for Elizabeth Berry-Kravis: Dodging mouse traps
Questions for Elizabeth Berry-Kravis: Measuring drug effects
Drugs designed to treat fragile X syndrome have yet to show substantial benefits in people. But rather than abandon them, child neurologist Elizabeth Berry-Kravis suggests a new way to measure their effectiveness.
Questions for Elizabeth Berry-Kravis: Measuring drug effects
Explore more from The Transmitter
Dispute erupts over universal cortical brain-wave claim
The debate highlights opposing views on how the cortex transmits information.
Dispute erupts over universal cortical brain-wave claim
The debate highlights opposing views on how the cortex transmits information.
Waves of calcium activity dictate eye structure in flies
Synchronized signals in non-neuronal retinal cells draw the tiny compartments of a fruit fly’s compound eye into alignment during pupal development.
Waves of calcium activity dictate eye structure in flies
Synchronized signals in non-neuronal retinal cells draw the tiny compartments of a fruit fly’s compound eye into alignment during pupal development.
Among brain changes studied in autism, spotlight shifts to subcortex
The striatum and thalamus are more likely than the cerebral cortex to express autism variants or bear transcriptional changes, two unpublished studies find.
Among brain changes studied in autism, spotlight shifts to subcortex
The striatum and thalamus are more likely than the cerebral cortex to express autism variants or bear transcriptional changes, two unpublished studies find.