Evan Schaffer is assistant professor of neuroscience at the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai. His lab uses mathematical tools to understand distributed computations in the brain, identify how these computations change with learning and identify how feedback from the body impacts cognition. Schaffer received his Ph.D. at the Center for Theoretical Neuroscience, in Larry Abbott’s lab at Columbia University. He completed his postdoctoral work in Richard Axel’s Lab at Columbia University

Evan Schaffer
Assistant professor of neuroscience
Icahn School of Medicine at Mount Sinai
Selected articles
- “Inhibitory stabilization of the cortical network underlies visual surround suppression” | Neuron
- “A complex-valued firing-rate model that approximates the dynamics of spiking networks” | PLoS Computational Biology
- “Odor perception on the two sides of the brain: Consistency despite randomness” | Neuron
- “The spatial and temporal structure of neural activity across the fly brain” | Nature Communications
- “Behavioral fingerprinting of the naked mole-rat uncovers signatures of eusociality and social touch” | bioRxiv
Explore more from The Transmitter
Worms help untangle brain structure/function mystery
The synaptic connectome of most animals bears little resemblance to functional brain maps, but it can still predict neuronal activity, according to two preprints that tackle the puzzle in C. elegans.

Worms help untangle brain structure/function mystery
The synaptic connectome of most animals bears little resemblance to functional brain maps, but it can still predict neuronal activity, according to two preprints that tackle the puzzle in C. elegans.
Microglia nurture young interneurons
The immune cells secrete a growth factor that “sets the supply of GABAergic interneurons in the developing brain.”

Microglia nurture young interneurons
The immune cells secrete a growth factor that “sets the supply of GABAergic interneurons in the developing brain.”
Xaq Pitkow shares his principles for studying cognition in our imperfect brains and bodies
Pitkow discusses how evolution's messy constraints shape optimal brain algorithms, from Bayesian inference to ecological affordances.
Xaq Pitkow shares his principles for studying cognition in our imperfect brains and bodies
Pitkow discusses how evolution's messy constraints shape optimal brain algorithms, from Bayesian inference to ecological affordances.