Kenna Hughes-Castleberry is science communicator at JILA and editor-in-chief of their journal, Light & Matter. She is also a freelance science journalist. Her beats include quantum technology, artificial intelligence, diversity within the tech industries, animal intelligence, corvids and cephalopods. Her work has been featured in various publications, including Scientific American, New Scientist, Discover Magazine, Ars Technica, Nature Biotechnology, Astronomy Magazine, Leaps Magazine, Hakai Magazine, ChemistryWorld, Physics.org, Colorado Magazine, Inside Quantum Technology, The Debrief and more. She sits on the board of the Science Writers Association of the Rocky Mountains (SWARM) and teaches science writing to graduate students at JILA.
Kenna Hughes-Castleberry
Contributing writer
From this contributor
Number-associated neurons help crows link values to symbols
Comparable neurons also exist in primates, which shared a common ancestor with crows more than 300 million years ago, suggesting that the ability to “count” evolved independently in the two lineages.
Number-associated neurons help crows link values to symbols
Explore more from The Transmitter
Remembering GABA pioneer Edward Kravitz
The biochemist, who died last month at age 92, was part of the first neurobiology department in the world and showed that gamma-aminobutyric acid is inhibitory.
Remembering GABA pioneer Edward Kravitz
The biochemist, who died last month at age 92, was part of the first neurobiology department in the world and showed that gamma-aminobutyric acid is inhibitory.
Protein tug-of-war controls pace of synaptic development, sets human brains apart
Human-specific duplicates of SRGAP2 prolong cortical development by manipulating SYNGAP, an autism-linked protein that slows synaptic growth.
Protein tug-of-war controls pace of synaptic development, sets human brains apart
Human-specific duplicates of SRGAP2 prolong cortical development by manipulating SYNGAP, an autism-linked protein that slows synaptic growth.
Neurons tune electron transport chain to survive onslaught of noxious stimuli
Nociceptors tamp down the production of reactive oxygen species in response to heat, chemical irritants or toxins.
Neurons tune electron transport chain to survive onslaught of noxious stimuli
Nociceptors tamp down the production of reactive oxygen species in response to heat, chemical irritants or toxins.