Mu Yang is a behavioral neuroscientist and the director of the Mouse NeuroBehavior Core at Columbia University Medical Center. She received training in animal behavior and neuroethology in the lab of the late Robert Blanchard at the University of Hawaii, where she earned her Ph.D. In 2006, she joined the lab of Jacqueline Crawley at the National Institute of Mental Health for postdoctoral training. She spent 2012 to 2016 as an assistant professor in the department of psychiatry and behavioral sciences and a faculty member at the MIND Institute at the University California, Davis. In 2016, she joined Columbia’s Institute for Genomic Medicine to lead the university’s first centralized state-of-the-art mouse behavior phenotyping facility. Since summer 2017, her team has provided testing and data analysis services to over 30 Columbia research groups.

Mu Yang
Director of the Mouse NeuroBehavior Core
Columbia University Medical Center
Explore more from The Transmitter
This paper changed my life: Dan Goodman on a paper that reignited the field of spiking neural networks
Friedemann Zenke’s 2019 paper, and its related coding tutorial SpyTorch, made it possible to apply modern machine learning to spiking neural networks. The innovation reinvigorated the field.

This paper changed my life: Dan Goodman on a paper that reignited the field of spiking neural networks
Friedemann Zenke’s 2019 paper, and its related coding tutorial SpyTorch, made it possible to apply modern machine learning to spiking neural networks. The innovation reinvigorated the field.
Autism and anxiety insights; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 15 September.

Autism and anxiety insights; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 15 September.
First nerve-net connectome shows how evolutionarily ancient nervous system coordinates movement
The map of a comb jelly’s aboral nerve net, which helps the animal orient and position itself within the water column, reveals a unique system for sensing the world and coordinating movement.
First nerve-net connectome shows how evolutionarily ancient nervous system coordinates movement
The map of a comb jelly’s aboral nerve net, which helps the animal orient and position itself within the water column, reveals a unique system for sensing the world and coordinating movement.