Headshot of Steve Ramirez.

Steve Ramirez

Assistant professor of psychological and brain sciences
Boston University

Steve Ramirez is assistant professor of psychological and brain sciences at Boston University and a former junior fellow at Harvard University. He received his B.A. in neuroscience from Boston University and began researching learning and memory in Howard Eichenbaum’s lab. He went on to receive his Ph.D. in neuroscience in Susumu Tonegawa’s lab at the Massachusetts Institute of Technology, where his work focused on artificially modulating memories in the rodent brain. Ramirez’s current work focuses on imaging and manipulating memories to restore health in the brain.

Both in and out of the lab, Ramirez is an outspoken advocate for making neuroscience accessible to all. He is passionate about diversifying and magnifying the voices in our field through intentional mentorship—an approach for which he recently received a Chan-Zuckerberg Science Diversity Leadership Award. He has also received an NIH Director’s Transformative Research Award, the Smithsonian’s American Ingenuity Award and the National Geographic Society’s Emerging Explorer Award. He has been recognized on Forbes’ 30 under 30 list and MIT Technology Review‘s Top 35 Innovators Under 35 list, and he has given two TED Talks.

Explore more from The Transmitter

Bringing neuroscience to rural Mexico: In conversation with Mónica López-Hidalgo

By offering education and translating scientific terms into Indigenous languages, López-Hidalgo’s outreach program, Neurociencias Para Todos, provides schoolteachers with tools to bring neuroscience to their communities.

By Ashley Juavinett
1 September 2025 | 5 min read

Llevando la neurociencia al México rural: En conversación Mónica López-Hidalgo

A través de la educación y traducción de términos científicos en lenguas indígenas, el programa Neurociencias Para Todos provee de herramientas a maestros para llevar la neurociencia a sus comunidades.

By Ashley Juavinett
1 September 2025 | 6 min read
Research image of neuron organization in c elegans.

Worms help untangle brain structure/function mystery

The synaptic connectome of most animals bears little resemblance to functional brain maps, but it can still predict neuronal activity, according to two preprints that tackle the puzzle in C. elegans

By Holly Barker
29 August 2025 | 7 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.