Dr Layton joined the University of Waterloo in 2018. Before then, she held the position of the Robert R. and Katherine B. Penn Professor of Mathematics, and Professor of Biomedical Engineering and Medicine at Duke University. She is the Deputy Editor of the American Journal of Physiology–Renal Physiology, Associate Editor of SIAM Review Book Section, and Associate Editor of the SIAM Journal on Applied Dynamical Systems. She also serves as the Associate Dean, Research and International, for the Faculty of Mathematics, and chairs the Research Equity, Diversity and Inclusion Council at the University of Waterloo.

Anita Layton
From this contributor
Early-detection technique analyzes how children with autism scan faces
Researchers at the University of Waterloo in Ontario, Canada, have developed a new autism detection technique that distinguishes among different eye-gaze patterns to help doctors more quickly and accurately detect autism in children.

Early-detection technique analyzes how children with autism scan faces
Explore more from The Transmitter
Autism-linked copy number variants always boost autism likelihood
By contrast, varied doses of the same genes decrease or increase the odds of five other conditions, with distinct biological consequences, two new preprints show.

Autism-linked copy number variants always boost autism likelihood
By contrast, varied doses of the same genes decrease or increase the odds of five other conditions, with distinct biological consequences, two new preprints show.
Everything everywhere all at once: Decision-making signals engage entire brain
The findings, gleaned from the most comprehensive map yet of brain activity during decision-making in mice, show that the process is even more distributed than previously thought.

Everything everywhere all at once: Decision-making signals engage entire brain
The findings, gleaned from the most comprehensive map yet of brain activity during decision-making in mice, show that the process is even more distributed than previously thought.
Astrocyte networks span large swaths of brain
The networks are plastic, connect brain regions that aren’t connected by neurons and may enable long-distance communication between astrocytes, a new preprint shows.
Astrocyte networks span large swaths of brain
The networks are plastic, connect brain regions that aren’t connected by neurons and may enable long-distance communication between astrocytes, a new preprint shows.