Loren Frank.

Loren Frank

Professor of physiology
University of California, San Francisco

Loren Frank is Howard Hughes Medical Institute Investigator and professor of physiology at the University of California, San Francisco (UCSF). He is also director of the Kavli Institute for Fundamental Neuroscience at UCSF. His laboratory uses a combination of techniques to study the neural bases of learning, memory and decision-making. In particular, his work focuses on the hippocampus and related structures, brain areas critical for forming and retrieving memories for the events of daily life. He also works in close collaboration with colleagues from multiple institutions to develop new technologies to understand how the brain works and how to fix it when it is not working properly. These technologies include flexible polymer electrodes that make it possible to record from large numbers of neurons for months at a time.

Frank received his B.A. in psychology and cognitive studies from Carleton College, his Ph.D. in systems neuroscience and computation from the Massachusetts Institute of Technology, and he did postdoctoral research at Massachusetts General Hospital and Harvard University.

He has received numerous awards for his scientific discoveries and his mentoring, including fellowships from the Sloan, McKnight and Merck Foundations, as well as the Society for Neuroscience Young Investigator Award, the Indiana University Gill Center’s Young Investigator Award, the UCSF Faculty Mentoring Award, and the College Mentors for Kids Inspire Award.

Explore more from The Transmitter

Two heatmap-like mouse silhouettes overlaid with a grid of ones and zeroes.

How artificial agents can help us understand social recognition

Neuroscience is chasing the complexity of social behavior, yet we have not answered the simplest question in the chain: How does a brain know “who is who”? Emerging multi-agent artificial intelligence may help accelerate our understanding of this fundamental computation.

By Eunji Kong
16 January 2026 | 5 min read
Brain network maps creating using lesion network mapping.

Methodological flaw may upend network mapping tool

The lesion network mapping method, used to identify disease-specific brain networks for clinical stimulation, produces a nearly identical network map for any given condition, according to a new study.

By Angie Voyles Askham
15 January 2026 | 7 min read
Crowd seen from above.

Common and rare variants shape distinct genetic architecture of autism in African Americans

Certain gene variants may have greater weight in determining autism likelihood for some populations, a new study shows.

By Laura Dattaro
15 January 2026 | 5 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.