Headshot of Robert Froemke.

Robert Froemke

Skirball Foundation Professor of Genetics
NYU Grossman School of Medicine

Robert Froemke is Skirball Foundation Professor of Genetics in the Neuroscience Institute and the otolaryngology and neuroscience departments at NYU Grossman School of Medicine. His lab studies neuromodulation, plasticity and behavior in rodents and humans. Froemke has a background in systems neuroscience, having performed Ph.D. work with Yang Dan at the University of California, Berkeley on spike-timing-dependent plasticity induced by natural spike trains in cortical networks. His postdoctoral research with Christoph Schreiner at the University of California, San Francisco focused on synaptic plasticity in vivo as related to auditory perception and behavior.

Froemke started his faculty position at NYU Grossman School of Medicine in 2010. He studies the synaptic mechanisms by which sounds acquire meaning, with a focus on oxytocin, maternal behavior and the use of neuroprosthetic devices, such as cochlear implants. For this work, he was awarded Sloan and Klingenstein Fellowships, and Pew and McKnight Scholarships. In 2021, Froemke was honored to receive a Landis Award for Outstanding Mentorship from the National Institute of Neurological Disorders and Stroke.

Explore more from The Transmitter

Research image of neuron organization in c elegans.

Worms help untangle brain structure/function mystery

The synaptic connectome of most animals bears little resemblance to functional brain maps, but it can still predict neuronal activity, according to two preprints that tackle the puzzle in C. elegans

By Holly Barker
29 August 2025 | 7 min read
Research image of microglia in organoids.

Microglia nurture young interneurons

The immune cells secrete a growth factor that “sets the supply of GABAergic interneurons in the developing brain.”

By Lauren Schenkman
28 August 2025 | 4 min read

Xaq Pitkow shares his principles for studying cognition in our imperfect brains and bodies

Pitkow discusses how evolution's messy constraints shape optimal brain algorithms, from Bayesian inference to ecological affordances.

By Paul Middlebrooks
27 August 2025 | 1 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.