Terrence Sejnowski.

Terrence Sejnowski

Francis Crick Chair
Salk Institute for Biological Studies

Terrence Sejnowski holds the Francis Crick Chair at the Salk Institute for Biological Studies. He is also professor of biology at the University of California, San Diego, where he co-directs the Institute for Neural Computation and the NSF Temporal Dynamics of Learning Center. He is president of the Neural Information Processing Systems Foundation, which organizes an annual conference attended by more than 1,000 researchers in machine learning and neural computation and is founding editor-in-chief of Neural Computation, published by the MIT Press.

As a pioneer in computational neuroscience, Sejnowski’s goal is to understand the principles that link brain to behavior. His laboratory uses both experimental and modeling techniques to study the biophysical properties of synapses and neurons and the population dynamics of large networks of neurons.

He received his Ph.D. in physics from Princeton University and was a postdoctoral fellow at Harvard Medical School. He was on the faculty at the Johns Hopkins University before joining the faculty at the University of California, San Diego. He has published more than 300 scientific papers and 12 books, including “The Computational Brain,” with Patricia Churchland.

Explore more from The Transmitter

Methodological flaw may upend network mapping tool

The lesion network mapping method, used to identify disease-specific brain networks for clinical stimulation, produces a nearly identical network map for any given condition, according to a new study.

By Angie Voyles Askham
15 January 2026 | 7 min read
Crowd seen from above.

Common and rare variants shape distinct genetic architecture of autism in African Americans

Certain gene variants may have greater weight in determining autism likelihood for some populations, a new study shows.

By Laura Dattaro
15 January 2026 | 5 min read
Research image of stem cells derived from people of African ancestry.

Bringing African ancestry into cellular neuroscience

Two independent teams in Africa are developing stem cell lines and organoids from local populations to explore neurodevelopmental and neurodegenerative conditions.

By Lauren Schenkman
14 January 2026 | 7 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.