Daniel Aharoni is assistant professor of neurology at the University of California, Los Angeles (UCLA). He received his Ph.D. in physics from UCLA, where he worked in high- and low-energy particle physics before shifting his focus to neurophysics. Aharoni stayed at UCLA for a postdoctoral fellowship under Baljit Khakh, Alcino Silva and Peyman Golshani, spearheading the technical development of the open-source UCLA Miniscope Project. Aharoni’s lab integrates engineering, neuroscience and physics to create innovative tools that address complex challenges in neuroscience. His research aims to enhance our understanding of neural circuits, advance tool design for neuroscience, and ensure equitable access to pioneering technologies.
Daniel Aharoni
Assistant professor of neurology
University of California, Los Angeles
From this contributor
Designing an open-source microscope
Funding for the development of open-source tools is on the rise, but support for their maintenance and dissemination, both crucial for their meaningful uptake, remains a major challenge.
Designing an open-source microscope
Explore more from The Transmitter
Dose, scan, repeat: Tracking the neurological effects of oral contraceptives
We know little about how the brain responds to oral contraceptives, despite their widespread use. I am committed to changing that: I scanned my brain 75 times over the course of a year and plan to make my data openly available.
Dose, scan, repeat: Tracking the neurological effects of oral contraceptives
We know little about how the brain responds to oral contraceptives, despite their widespread use. I am committed to changing that: I scanned my brain 75 times over the course of a year and plan to make my data openly available.
Cracking the code of the extracellular matrix
Despite evidence for a role in plasticity and other crucial functions, many neuroscientists still view these proteins as “brain goop.” The field needs technical advances and a shift in scientific thinking to move beyond this outdated perspective.
Cracking the code of the extracellular matrix
Despite evidence for a role in plasticity and other crucial functions, many neuroscientists still view these proteins as “brain goop.” The field needs technical advances and a shift in scientific thinking to move beyond this outdated perspective.
Huntington’s disease gene variants past a certain size poison select cells
The findings—providing “the next step in the whole pathway”—help explain the disease’s late onset and offer hope that it has an extended therapeutic window.
Huntington’s disease gene variants past a certain size poison select cells
The findings—providing “the next step in the whole pathway”—help explain the disease’s late onset and offer hope that it has an extended therapeutic window.