Ted Satterthwaite is McLure Associate Professor in Psychiatry and Behavioral Research at the University of Pennsylvania’s Perelman School of Medicine. He completed medical and graduate training at Washington University in St. Louis, where he was a student of Randy L. Buckner. Subsequently, he was a psychiatry resident and a neuropsychiatry fellow at Penn, under the mentorship of Raquel E. Gur. He joined the faculty of the psychiatry department in 2014 and served as director of imaging analytics at the Brain Behavior Laboratory from 2015 to 2019. Since 2020, he has directed the Penn Lifespan Informatics and Neuroimaging Center. His research uses multi-modal neuroimaging to describe both normal and abnormal patterns of brain development, in order to better understand the origins of neuropsychiatric illness. He has been the principal investigator on nine R01 grants from the National Institutes of Health. His work has been recognized with the Brain and Behavior Research Foundation’s Klerman Prize for Clinical Research, the NIMH Biobehavioral Research Award for Innovative New Scientists (BRAINS) award, the NIH Merit Award, as well as several teaching awards.
Ted Satterthwaite
McLure Associate Professor in Psychiatry and Behavioral Research
University of Pennsylvania
From this contributor
How scuba diving helped me embrace open science
Our lab adopted practices to make data- and code-sharing feel safer, including having the coding equivalent of a dive buddy. Trainees call the buddy system a welcome safety net.
How scuba diving helped me embrace open science
Explore more from The Transmitter
Protein tug-of-war controls pace of synaptic development, sets human brains apart
Human-specific duplicates of SRGAP2 prolong cortical development by manipulating SYNGAP, an autism-linked protein that slows synaptic growth.
Protein tug-of-war controls pace of synaptic development, sets human brains apart
Human-specific duplicates of SRGAP2 prolong cortical development by manipulating SYNGAP, an autism-linked protein that slows synaptic growth.
Neurons tune electron transport chain to survive onslaught of noxious stimuli
Nociceptors tamp down the production of reactive oxygen species in response to heat, chemical irritants or toxins.
Neurons tune electron transport chain to survive onslaught of noxious stimuli
Nociceptors tamp down the production of reactive oxygen species in response to heat, chemical irritants or toxins.
Vicente Raja brings ecological psychology concepts to neuroscience
He suggests neuroscientists should pay more attention to the principles of Gibsonian ecological psychology, such as affordances, ecological information and resonance, to better explain perception and action.
Vicente Raja brings ecological psychology concepts to neuroscience
He suggests neuroscientists should pay more attention to the principles of Gibsonian ecological psychology, such as affordances, ecological information and resonance, to better explain perception and action.