Tychele Turner is assistant professor of genetics at the Washington University School of Medicine in St. Louis, Missouri, where her lab focuses on the study of noncoding variation in autism, precision genomics in 9p deletion syndrome, optimization of genomic workflows and the application of long-read sequencing to human genetics.

Tychele Turner
Assistant professor of genetics
Washington University School of Medicine
From this contributor
How long-read sequencing will transform neuroscience
New technology that delivers much more than a simple DNA sequence could have a major impact on brain research, enabling researchers to study transcript diversity, imprinting and more.

How long-read sequencing will transform neuroscience
Focus on function may help unravel autism’s complex genetics
To find the pathogenic mutations in complex disorders such as autism, researchers may need to conduct sophisticated analyses of the genetic functions that are disrupted, says geneticist Aravinda Chakravarti.

Focus on function may help unravel autism’s complex genetics
Explore more from The Transmitter
It’s time to examine neural coding from the message’s point of view
In studying the brain, we almost always take the neuron’s perspective. But we can gain new insights by reorienting our frame of reference to that of the messages flowing over brain networks.
It’s time to examine neural coding from the message’s point of view
In studying the brain, we almost always take the neuron’s perspective. But we can gain new insights by reorienting our frame of reference to that of the messages flowing over brain networks.
Autism traits, mental health conditions interact in sex-dependent ways in early development
Here is a roundup of autism-related news and research spotted around the web for the week of 31 March.

Autism traits, mental health conditions interact in sex-dependent ways in early development
Here is a roundup of autism-related news and research spotted around the web for the week of 31 March.
Organoids and assembloids offer a new window into human brain
These sophisticated 3D cultures reveal previously inaccessible stages of human brain development and enable the systematic study of disease genes.

Organoids and assembloids offer a new window into human brain
These sophisticated 3D cultures reveal previously inaccessible stages of human brain development and enable the systematic study of disease genes.