Nico Dosenbach is associate professor of neurology at Washington University School of Medicine. His research as a systems neuroscientist is focused on pushing resting-state functional connectivity MRI (RSFC), functional MRI (fMRI) and diffusion tensor imaging (DTI) to the level of individual patients. To create and annotate the connectomes of individuals he is working to improve the signal-to-noise, spatial resolution and replicability of RSFC, DTI and fMRI data.

Nico Dosenbach
Associate professor of neurology
Washington University School of Medicine
From this contributor
Breaking down the winner’s curse: Lessons from brain-wide association studies
We found an issue with a specific type of brain imaging study and tried to share it with the field. Then the backlash began.

Breaking down the winner’s curse: Lessons from brain-wide association studies
Explore more from The Transmitter
This paper changed my life: Dan Goodman on a paper that reignited the field of spiking neural networks
Friedemann Zenke’s 2019 paper, and its related coding tutorial SpyTorch, made it possible to apply modern machine learning to spiking neural networks. The innovation reinvigorated the field.

This paper changed my life: Dan Goodman on a paper that reignited the field of spiking neural networks
Friedemann Zenke’s 2019 paper, and its related coding tutorial SpyTorch, made it possible to apply modern machine learning to spiking neural networks. The innovation reinvigorated the field.
Autism and anxiety insights; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 15 September.

Autism and anxiety insights; and more
Here is a roundup of autism-related news and research spotted around the web for the week of 15 September.
First nerve-net connectome shows how evolutionarily ancient nervous system coordinates movement
The map of a comb jelly’s aboral nerve net, which helps the animal orient and position itself within the water column, reveals a unique system for sensing the world and coordinating movement.
First nerve-net connectome shows how evolutionarily ancient nervous system coordinates movement
The map of a comb jelly’s aboral nerve net, which helps the animal orient and position itself within the water column, reveals a unique system for sensing the world and coordinating movement.