Uta Frith


Uta Frith studied experimental psychology at the Universität des Saarlandes, Saarbrücken and trained in clinical psychology at the University of London’s Institute of Psychiatry She completed her Ph.D. thesis on autism in 1968 and from then on has worked as a research scientist funded mainly by the Medical Research Council UK. She has been Visiting Professor at the University of Aarhus, Denmark from 2007-2015. She is now Emeritus Professor of Cognitive Development at the UCL Institute of Cognitive Neuroscience.
Autism and dyslexia have been her main focus of research. In both fields she has pioneered an experimental neuropsychological approach. She has contributed some of the major theories explaining these disorders and has identified specific deficits in underlying cognitive mechanisms and their basis in the brain. She has published some 250 papers and books, and in 2014 she was listed by the APA as among the 200 most eminent psychologists of the modern era.
In the last few years she has increased her work in science communication, and in championing women in science.

From this contributor

Explore more from The Transmitter

A mouse stands on a gloved hand.

Psychedelics research in rodents has a behavior problem

Simple behavioral assays—originally validated as drug-screening tools—fall short in studies that aim to unpack the psychedelic mechanism of action, so some behavioral neuroscientists are developing more nuanced tasks.

By Calli McMurray
19 December 2025 | 8 min read
Research image of organoids derived from stem cell lines from people with intellectual disability, polymicroglia or microcephaly, alongside a control organoid.

New organoid atlas unveils four neurodevelopmental signatures

The comprehensive resource details data on microcephaly, polymicrogyria, epilepsy and intellectual disability from 352 people.

By Diana Kwon
17 December 2025 | 4 min read

Can neuroscientists decode memories solely from a map of synaptic connections?

Five experts discuss the progress, possibilities and hurdles of decoding a “nontrivial” memory from an organism just by analyzing its brain connectivity patterns.

By Paul Middlebrooks
17 December 2025 | 1 min read

privacy consent banner

Privacy Preference

We use cookies to provide you with the best online experience. By clicking “Accept All,” you help us understand how our site is used and enhance its performance. You can change your choice at any time. To learn more, please visit our Privacy Policy.