Timothy O’Leary.

Timothy O’Leary

Professor of information engineering and neuroscience
University of Cambridge

Timothy O’Leary is professor of information engineering and neuroscience at the University of Cambridge. His research lies at the intersection between physiology, computation and control engineering. His goal is to understand how nervous systems self-organize, adapt and fail, and to connect these to diversity and variability in nervous system properties.

Originally trained as a pure mathematician, O’Leary dropped out of a Ph.D. on hyperbolic geometry to study the brain. After retraining as an experimental physiologist, he obtained his doctorate in experimental and computational neuroscience from the University of Edinburgh in 2009.

He has worked as both an experimentalist and theoretician, on systems that span the scale from single ion channel dynamics to whole brain and behavior, and across invertebrate and vertebrate species. His group works closely with experimentalists to study neuromodulation, neural dynamics and how sensorimotor information is represented in the brain, more recently focusing on how neural representations evolve over time. He approaches these problems from an unusual perspective, citing engineering principles as being key to understanding the brain—and biology more widely.

Explore more from The Transmitter

Grid of human brain scans.

Dose, scan, repeat: Tracking the neurological effects of oral contraceptives

We know little about how the brain responds to oral contraceptives, despite their widespread use. I am committed to changing that: I scanned my brain 75 times over the course of a year and plan to make my data openly available.

By Carina Heller
20 January 2025 | 7 min read
Colorful illustration of a latticework of proteins.

Cracking the code of the extracellular matrix

Despite evidence for a role in plasticity and other crucial functions, many neuroscientists still view these proteins as “brain goop.” The field needs technical advances and a shift in scientific thinking to move beyond this outdated perspective.

By Anna Victoria Molofsky
17 January 2025 | 5 min read
A repeated DNA strand extends farther from the left side of the image with each iteration.

Huntington’s disease gene variants past a certain size poison select cells

The findings—providing “the next step in the whole pathway”—help explain the disease’s late onset and offer hope that it has an extended therapeutic window.

By Angie Voyles Askham
16 January 2025 | 6 min read